Showing 11 to 20 of 213 results

A research team led by scholars from City University of Hong Kong (CityU), Australia and Germany successfully mediated the poor charge carrier transport at low voltage by adding phosphorus to a metal oxide catalyst, which reduced energy losses during water splitting. The findings offer a potential option for achieving carbon neutrality.

Recently, researchers from City University of Hong Kong (CityU) overcame this obstacle by inventing a novel device-engineering strategy to successfully suppress the energy conversion loss, resulting in record-breaking efficiency.

A team led by the City University of Hong Kong (CityU) researchers recently developed an advanced wireless haptic interface system, called WeTac, worn on the hand, which has soft, ultrathin soft features, and collects personalised tactile sensation data to provide a vivid touch experience in the metaverse.

A novel, space-time coding antenna developed at CityU promotes 6G and secure wireless communications
A research team co-led by a scientist at City University of Hong Kong (CityU) has developed a novel antenna that allows manipulation of the direction, frequency and amplitude of the radiated beam, and is expected to play an important role in the integration of sensing and communications (ISAC) for 6th-generation (6G) wireless communications.

Recently, a research team from City University of Hong Kong (CityU) developed a new, ultra-stable hydrogen evolution reaction (HER) electrocatalyst, which is based on two-dimensional mineral gel nanosheets and does not contain any precious metals. The catalyst can be produced in large scale and can help achieve a lower hydrogen price in the future.

Temporal lobe epilepsy (TLE) is one of the most common types of epilepsy worldwide. Although symptomatic medications are available, one-third of TLE patients remain unresponsive to current treatment, so new drug targets are critically needed. A research team co-led by a City University of Hong Kong (CityU) neuroscientist recently identified and developed a new drug candidate that has potential for effectively treating TLE by suppressing neuroinflammation.

The latest research led by materials scientists at City University of Hong Kong (CityU) found that tailoring the concentration of cobalt in high entropy alloys (also called chemically complex alloys) can prevent nanoparticles from rapid coarsening at high temperatures.

CityU Scholar used the Machine Learning approach to detect risk factors of loneliness symptoms during the pandemic

A research team led by the City University of Hong Kong (CityU) recently invented a smart mask, integrating an ultrathin nanocomposite sponge structure-based soundwave sensor, which is capable of detecting respiratory sounds of breathing, coughing and speaking.

A multinational team of researchers, co-led by a City University of Hong Kong (CityU) physicist, has found that a novel metallic crystal displays unusual electronic behaviour on its surface, thanks to the crystal’s unique atomic structure. Their findings open up the possibility of using this material to develop faster and smaller microelectronic devices.