Showing 31 to 40 of 213 results

A research team co-led by City University of Hong Kong (CityU) have successfully developed a novel Vacuum Ultra-Violet (VUV) meta-lens which can generate and focus the VUV light, a disruptive technology for the UV optics market.

Piezoelectric materials are applicable in the biomedical field, and if they can be biocompatible and degradable, it will be a big step towards real applications. Recently, a research team at City University of Hong Kong (CityU) developed a simple exfoliation method to prepare ultrathin films of small intestine tissues from sheep.

The double-helix structure of DNA deforms by environmental stimuli, which will then affect gene expression, and eventually trigger a sequence of cellular processes. Recent researches led by a physicist from City University of Hong Kong (CityU) observed substantial DNA deformations by ions and temperature changes.

A collaborative research team co-led by researchers from City University of Hong Kong (CityU) developed a new approach to generate deep-ultraviolet lasing through a “domino upconversion” process of nanoparticles using near-infrared light, which is commonly used in telecommunication devices.

A research team at City University of Hong Kong (CityU) developed a new type of RNA structure targeting tool to specifically recognise unusual four-strand RNA structures, which are associated with diseases such as cancer and neurological disorders. The findings could help develop new therapeutic tools for related treatments.

Inborn defensive behaviours, such as flight, freeze and fight, are crucial for animals to survive in a dangerous environment in nature. Neuroscientists from City University of Hong Kong (CityU) recently revealed the essential neurocircuitry that is fundamental for animals to perceive and integrate environmental cues to initate defensive behaviour.

A research team co-led by chemists from City University of Hong Kong (CityU) and Imperial College London (Imperial College) has developed new, highly efficient and stable perovskite solar cells.

Two-dimensional (2D) transition metal dichalcogenides (TMDs), an emerging class of materials that can be used as semiconductors and insulators, have promising potential in various applications due to their unique properties. But the reliable production of these atomically thin 2D materials has been challenging.

To support hospitals in Hong Kong to handle the surge in the number of patients amid the fifth wave of COVID-19 in the city, City University of Hong Kong (CityU) modified its fast-track ventilation system invention to meet the practical needs on the medical front line.

Researchers at City University of Hong Kong (CityU) received tremendous accolades at Inventions Geneva Evaluation Days (IGED) 2022 by winning a total of 22 awards, the highest number among local institutions for two years in a row, including one Gold Medal with Congratulations of the Jury, six Gold Medals, 13 Silver Medals and two Bronze Medals.