Research Stories
Filter by category
Filter by year
Filter by year
- All Categories
- Alloys
- Analytical Chemistry
- Anti-Cancer
- Applied Physics
- Atomic, Molecular, and Optical Physics
- Chemical Biology
- Chemistry
- Clean Energy
- Condensed Matter
- DNA
- Energy
- Environmental Science or Biology
- Food Safety
- Kondo Cloud
- Materials
- Materials Chemistry
- Materials Science
- Mathematical Modelling
- Mathematics
- Nanomaterials
- Neural Networks
- Neutron Scattering
- Photosynthesis
- Photothermal Therapy
- Physics
- Quantum Materials
- Rankings
- Renewable Energy
- RNA
- Soft Matter & Biophysics
- Solar Cell
- Sound Wave
- Spectroscopy and Imaging
- Sustainability
- Theoretical and Computational Physics
- Transition Metal

The double-helix structure of DNA deforms by environmental stimuli, which will then affect gene expression, and eventually trigger a sequence of cellular processes. Recent researches led by a physicist from City University of Hong Kong (CityU) observed substantial DNA deformations by ions and temperature changes. Furthermore, the researchers developed one simple physical model to explain DNA deformations. These results provide new insights into the molecular mechanisms of cellular responses to ions and temperature changes and can be used to control gene expression by ions and temperature.

A collaborative research team co-led by researchers from City University of Hong Kong (CityU) developed a new approach to generate deep-ultraviolet lasing through a “domino upconversion” process of nanoparticles using near-infrared light, which is commonly used in telecommunication devices.

A research team at City University of Hong Kong (CityU) developed a new type of RNA structure targeting tool to specifically recognise unusual four-strand RNA structures, which are associated with diseases such as cancer and neurological disorders. The findings could help develop new therapeutic tools for related treatments.

A research team co-led by chemists from City University of Hong Kong (CityU) and Imperial College London (Imperial College) has developed new, highly efficient and stable perovskite solar cells.

Researchers at City University of Hong Kong (CityU) received tremendous accolades at Inventions Geneva Evaluation Days (IGED) 2022 by winning a total of 22 awards, the highest number among local institutions for two years in a row, including one Gold Medal with Congratulations of the Jury, six Gold Medals, 13 Silver Medals and two Bronze Medals.

In a world first, a team co-led by a physicist at City University of Hong Kong (CityU) has discovered that excitons—excited electrons bound to empty electron “holes”—can exist stably and travel rapidly through metal.