Dr. Jian WANG

Education
PhD in Mechanical Engineering, The Hong Kong University of Science and Technology
Staff title
Assistant Professor

Dr. Jian WANG obtained his BEng degree in Energy, Power System, and Automation Engineering from XJTU (China) in 2013. During his UG life, he obtained the National Scholarship twice from the Ministry of Education of P.R.China and was selected as the top 15 finalist of the Outstanding Student Model of XJTU (highest honor with 10 awardees out of all undergraduates in XJTU). After the UG education, he took one year’s postgraduate course at XJTU majoring in solid mechanics, and then he moved to the HKUST for Ph.D study. In 2017, he visited Northwestern University (USA) working with Prof. Sossina Haile on developing solid oxide fuel cells, and in 2018 he received Ph.D degree from the HKUST. Before joining the SEE at CityU, he worked as the SNU Science Fellow researcher at Seoul National University (Korea). Dr. WANG’s research is focusing on sustainable energy conversion and storage devices, e.g., fuel cells, electrolyzers, and batteries, with a particular interest in the dynamic electrochemical energy process.

Education
2014/09-2018/08 Ph.D in Mechanical Engineering, HKUST, Hong Kong SAR, China
2017/11-2018/02 Visiting Pre-doctor fellow, Northwestern University, USA
2013/08-2014/07 Graduate study majoring in Solid Mechanics, Xi'an Jiaotong University, China
2010/08-2013/07 Bachelor of Engineering, Energy, Power System and Automation Engineering, Xi'an Jiaotong University, China
2009/08- 2010/07 Undergraduate study majoring in Clinical Medicine, Xi'an Jiaotong University, China
Other Information

Research Interest

Electrochemical cells (e.g., fuel cells, electrolyzers, batteries) are made of complex components, characterizing which from a specific scale fails to convey comprehensive or even correct insights. Moreover, with continuous mass & energy exchange with the external environment, electrochemical cells respond dynamically. Ex-situ characterizations cannot reflect the dynamic energy process well. Through in-situ experimental setups, we are targeting to operando probe electrochemical cells across multiple scales, reveal the dynamic composition-structure-performance relationship for energy cells, and clarify the mechanisms of their energy conversion & storage processes. Further by integrating finite element analysis and quantum mechanics calculations, we are improving the understanding of those energy cells. Meanwhile, by precisely regulating the real-time behavior of energy materials, we are developing high-performance and cost-effective energy devices. Some specific research interest includes the following and beyond:

  • Operando monitoring and in-situ modulation of electrochemical energy process;
  • Developing sustainable energy devices (Fuel cells, Electrolyzers, Vehicle batteries);
  • CO2 splitting and reduction technology;
  • Environmental and Economic analysis & optimization of energy systems;
  • Thermal management of electronic devices;
  • Finite element analysis and first-principle calculation.

Positions Available

Dr. WANG’s DEEP (Dynamic Electrochemical Energy Process) group has several openings for research assistants, master/Ph.D students, postdoctoral fellows, and visiting scholars. Successful candidates should demonstrate strong motivation, critical thinking ability, as well as effective writing and communication skills. DEEP welcomes members with diverse skills, and there is no solid requirement on the area of the candidate’s education/working background. Relevant disciplines such as energy engineering, electrochemistry, material science, applied physics, mechanical engineering, thermofluids, and beyond are welcome. Friendly group environments, high-level research facilities, competitive salary, and overseas exchange/conference/research opportunities, will be offered. To apply, please contact Dr. Jian WANG directly with the CV attached. Review of applications will begin immediately until the positions are filled.

City University of Hong Kong is an equal opportunity employer and we are committed to the principle of diversity. We encourage applications from all qualified candidates, especially applicants who will enhance the diversity of our staff.

Selected Journal Publications

First /Co-first/Corresponding*

  • J. Wang,* S. Kim, J. Liu, Y. Gao, S. Choi, J. Han, S. Jo, F. Ciucci, H. Kim, Q. Li, W. Yang, X. Long, S. Yang, S. Cho, M. Kim, H. Kim, J. Lim. Redirecting Dynamic Surface Restructuring of a Layered Transition Metal Oxide Catalyst for Superior Water OxidationNat. Catal., 2021, 4, 212–222. (Highlight as journal cover)
  • R. Gao, J. Wang, Z-F Huang, R. Zhang, W. Wang, L. Pan, J. Zhang, W. Zhu, X. Zhang, C. Shi, J. Lim, J. Zhou. Pt/Fe2O3 with Pt-Fe pair sites as a catalyst for oxygen reduction with ultralow Pt-loading. Nat. Energy, 2021, 6, 614–623. 
  • Z. Zhang, † J. Liu, †  J. Wang, † Q. Wang, Y. Wang, K. Wang, Z. Wang, M. Gu, Z. Tang, J. Lim, T. Zhao, F. Ciucci. Single-atom Catalyst for High-performance Methanol Oxidation. Nat. Commun, 2021,12,5235.
  • M. Lin, J. Wang, G. Kim, J. Liu, L. Pan, Y. Lee, J. Oh, Y. Jung, S. Seo, Y. Son, J. Lim, J. Park, T. Hyeon, J. Nam. One-Pot Heterointerfacial Metamorphosis for Synthesis and Control of Widely Varying Heterostructured Nanoparticles. J. Am. Chem. Soc. 2021, 143, 9, 3383–3392. (Highlight as journal cover)
  • J. Wang, †,* Y. Gao,  H. Kong, J. Kim, S. Choi, F. Ciucci, Y. Hao, S. Yang, Z. Shao, J. Lim. Non-precious Catalysts for Alkaline Water Electrolysis: Operando Characterizations, Theoretic calculations, and Recent Advances. Chem. Soc. Rev., 2020, 49, 9154-9196.
  • J. Wang, H. Kong, J. Zhang, Y. Hao, Z. Shao, F. Ciucci. Carbon-based Electrocatalyst for Sustainable Energy Applications. Prog. Mater. Sci., 2021, 116, 100717. (WOS Highly Cited Paper)
  • J. Yu, J. Wang, X. Long, L. Chen, Q. Cao, C. Qiu, J. Wang, J. Lim, S. Yang. Formation of FeOOH Nanosheets Induces Substitutional Doping of CeO2-x with High Valence Ni for Efficient Water Oxidation. Adv. Energy Mater., 2021, 11, 2002731.
  • S. Hu, J. Wang, J. Zhang, J. Lim, Y. Gao, S. Zhang. Engineering the Electronic Structure of Perovskite Oxide Surface with Ionic Liquid for Enhanced Oxygen Reduction Reaction. Appl. Catal. B: Environ.2021, 282, 119593.
  • Curcio, J. Wang, Z. Wang, Z. Zhang, A. Belotti, S. Pepe, M.B. Effat, Z. Shao, J. Lim, F. Ciucci. Unlocking the Potential of Mechanochemical Coupling: Boosting the Oxygen Evolution Reaction by Mating Proton Acceptors with Electron Donors. Adv. Funct. Mater., 2020, 2008077.
  • H. Zhao, N. Tu, W. Zhang, M. Zhang, J. Wang.* Novel Synthesis of Silicon/Carbon Nanotube Microspheres as Anode Additives through Chemical Vapor Deposition in Fluidized Bed Reactor. Scripta. Mater., 2021, 192, 49-54.
  • J. Wang,* J. Kim, S. Choi, H. Wang, J. Lim. A Review of Carbon-supported Non-precious Metals as Energy-related Electrocatalysts. Small Methods, 2020, 4, 2000621.
  • J. Wang, H. Kim, H. Hyun, S. Jo, J. Han, D. Ko, S. Seo, J. Kim, H. Kong, J. Lim. Probing and Resolving the Heterogeneous Degradation of Nickel-rich Layered Oxide Cathodes across Multi-length ScalesSmall Methods2020, 4, 2000551.
  • J. Wang, S. Choi, J. Kim, J. Lim. Recent Advances of First d-block Metal-based Perovskite Oxide Electrocatalysts for Alkaline Water Splitting. Catalysts 2020, 10, 770.
  • J. Wang, F. Ciucci. In-situ Synthesis of Bimetallic Phosphide with Carbon Tubes as an Active Electrocatalyst for Oxygen Evolution Reaction. Appl. Catal. B: Environ., 2019, 254, 292-299.
  • J. Wang,* H. Kong, Y. Xu, J. Xu. Experimental investigation of heat transfer and flow characteristics in finned copper foam heat sinks subjected to jet impingement cooling. Appl. Energy, 2019, 241, 433-443.
  • H. Kong, X. Kong, H. Wang, J. Wang.* A Strategy for Optimizing Efficiencies of Solar Thermochemical Fuel Production Based on Nonstoichiometric OxidesInt. J. Hydrogen Energy, 2019, 44, 19585-19594.
  • J. Wang,† Y. Gao, F. Ciucci. Mechanochemical Coupling of MoS2 and Perovskites for Hydrogen Generation. ACS Appl. Energy Mater. 2018, 1, 6409–6416.
  • J. Wang, Y. Gao, TL You, F. Ciucci. Bimetal-decorated Nanocarbon as A Superior Electrocatalyst for Overall Water SplittingJ. Power Sources, 2018, 401, 312-321.
  • J. Wang, Y. Gao, D. Chen, J. Liu, Z. Zhang, Z Shao, F. Ciucci. Water Splitting with an Enhanced Double PerovskiteACS Catal., 2018, 8, 364-371.
  • J. Wang, F. Ciucci. Boosting Bifunctional Oxygen Electrolysis for N-Doped Carbon via Bimetal AdditionSmall, 2017, 13, 1604103.
  • J. Wang, K. Y. Lam, M. Saccoccio, Y. Gao, D. Chen, F. Ciucci. Ca and In co-doped BaFeO3−δ as a Cobalt-free Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells. J. Power Sources, 2016, 324, 224-232.
  • J. Wang, H. Zhao, Y. Gao, D. Chen, C. Chen, M. Saccoccio, F. Ciucci. Ba0.5Sr0.5Co0.8Fe0.2O3−δ on N-doped Mesoporous Carbon Derived from Organic Waste as a Bi-functional Oxygen Catalyst. Int. J. Hydrogen Energy, 2016, 41, 10744-10754. 
  • J. Wang, M. Saccoccio, D. Chen, Y. Gao, C. Chen, F. Ciucci. The Effect of A-site and B-site Substitution on BaFeO3−δ: An Investigation as a Cathode Material for Intermediate-temperature Solid Oxide Fuel CellsJ. Power Sources, 2015, 297, 511-518.
  • D. Chen, J. Wang, Z. Zhang, Z. Shao, F. Ciucci. Boosting Oxygen Reduction/Evolution Reaction Activities with Layered Perovskite CatalystsChem. Commun., 2016, 52, 10739-10742.
  • H. Zhao, J. Wang, C. Chen, D. Chen, Y. Gao, M. Saccoccio, F. Ciucci. A Bi-functional Catalyst for Oxygen Reduction and Oxygen Evolution Reactions from Used Baby Diapers: α-Fe2O3 Wrapped in P and S Dual Doped Graphitic CarbonRSC Adv., 2016, 6, 64258-64265.
  • H. Kong, J. Zhang, Y. Han, L. Wu, H. Wang, J. Wang.* Perspective of CIGS-BIPV's Product Competitiveness in China. Int. J. Photoenergy2020, https://doi.org/10.1155/2020/5392594.
Staff Image
Jian WANG
Contact Information
Office: YEUNG-G5453
Phone: +(852)-3442-9285
Fax: +(852)-3442-0688
Email: jian.wang@cityu.edu.hk

Time slots for consultation

Research Interests
  • Operando monitoring and in-situ modulation of electrochemical energy process
  • Developing sustainable energy devices (Fuel cells, Electrolyzers, Vehicle batteries)
  • CO2 splitting and reduction technology
  • Environmental and Economic analysis & optimization of energy systems
  • Thermal management of electronic devices
  • Finite element analysis and first-principle calculation