An efficient electrochemical intercalation method for high-yield production of TMD nanosheets

Two-dimensional (2D) transition metal dichalcogenides (TMDs), an emerging class of materials that can be used as semiconductors and insulators, have promising potential in various applications due to their unique properties. But the reliable production of these atomically thin 2D materials has been challenging. A research team led by a material scientist from City University of Hong Kong (CityU) has developed an efficient electrochemical exfoliation method to achieve high-yield production of TMD nanosheets.

Generating ultra-violet lasers with near-infrared light through “domino upconversion” of nanoparticles

Strong and coherent ultraviolet light emission devices have enormous medical and industrial application potential, but generating ultraviolet light emission in an effective way has been challenging. Recently, a collaborative research team co-led by researchers from City University of Hong Kong (CityU) developed a new approach to generate deep-ultraviolet lasing through a “domino upconversion” process of nanoparticles using near-infrared light, which is commonly used in telecommunication devices.

New CityU exfoliation technique “recovers” biomaterial’s piezoelectricity

Piezoelectric materials are applicable in the biomedical field, and if they can be biocompatible and degradable, it will be a big step towards real applications. Recently, a research team at City University of Hong Kong (CityU) developed a simple exfoliation method to prepare ultrathin films of small intestine tissues from sheep. This biological tissue has been considered to have no piezoelectric properties at the macroscale, but the CityU research team discovered that if the material is ultathin, it can show piezoelectricity.

CityU’s Novel metalens revolutionises conventional Vacuum UV optics technology

A research team co-led by City University of Hong Kong (CityU) have successfully developed a novel Vacuum Ultra-Violet (VUV) meta-lens which can generate and focus the VUV light, a disruptive technology for the UV optics market.

VUV is used in semiconductor manufacturing, photochemistry and materials science. The focused VUV light source is strongly needed for nanolithography, material processing, advanced manufacturing, and other industrial areas.

CityU material scientists discover a new mechanism to increase the strength and ductility of high-entropy alloys

A research team co-led by materials scientists from City University of Hong Kong (CityU) has recently discovered a new mechanism to increase the strength and ductility of a high-entropy alloy, two properties which normally vary inversely with each other. The findings provide important insights for the future design of strong yet ductile high-entropy alloys and high-entropy ceramics.

Four CityU scholars awarded in China's Excellent Young Scientists Fund 2022

The distinguished research capabilities of young scholars at City University of Hong Kong (CityU) are widely recognized. The National Natural Science Foundation of China recently announced the results of the Excellent Young Scientists Fund (Hong Kong and Macau) for 2022. Four young scholars at CityU were awarded. Each of them will receive a research grant of RMB 2 million to directly conduct innovative research in Hong Kong for a period of three years.

Developing new approaches to investigate the dynamics of RNA G-quadruplex

CityU invents a method to convert 3D-printed polymer into a 100-times stronger, ductile hybrid carbon microlattice material

Developing a lightweight material that is both strong and highly ductile has been regarded as a long-desired goal in the field of structural materials, but these properties are generally mutually exclusive. Researchers at City University of Hong Kong (CityU) recently discovered a low-cost, direct method to turn commonly used 3D printable polymers into lightweight, ultra-tough, biocompatible hybrid carbon microlattices, which can be in any shape or size, and are 100 times stronger than the original polymers.

CityU is the top university in Hong Kong for most US patents granted for the sixth consecutive year; 75 patents and technologies licensed through HK Tech 300

City University of Hong Kong (CityU) shone once again in the 2021 top 100 universities granted US utility patents, according to the National Academy of Inventors (NAI). CityU placed 29th in the world, its highest-ever position and 22 places better than last year. Furthermore, CityU was ranked first among local institutions for the sixth consecutive year.

CityU chemists boost eco-friendly battery performance using catalysts with unconventional phase nanostructures

The metal-carbon dioxide battery is a promising and environmentally friendly technology, but its energy efficiency is limited. Recently, a research team co-led by chemists from City University of Hong Kong (CityU) discovered an innovative way to overcome this problem by introducing an unconventional phase nanomaterial as a catalyst, boosting battery energy efficiency up to 83.8%. The study reveals a novel design of catalysts for the new generation of meta-gas batteries that can contribute to carbon neutral goals.

Sitemap

arrow