Selected Publications


Raymond CHAN Kwok Wai CHUNG Philippe G. CIARLET Felipe CUCKER
Dan DAI Han FENG Daniel W. C. HO Benny Y. C. HON
Xianpeng HU Wonjung LEE Heng LIAN Hongyu LIU
Wing Cheong LO Ya Yan LU Tao LUO Cristinel MARDARE
Chenchen MOU Pierre NOLIN Weifeng QIU Stephen SMALE
Roderick S. C. WONG Jonathan WYLIE Wei XIANG Tong YANG
Shun ZHANG Chao ZHOU Xiaosheng ZHUANG  
     

Raymond CHAN

  • R.H.Chan and G. Strang, Toeplitz Equations by Conjugate Gradient with Circulant Preconditioner, SIAM J. Sci. Stat. Comput., 10 (1989), 104-119.
  • R. H. Chan and K.P. Ng, Conjugate Gradient Method for Toeplitz Systems, SIAM Review, 38 (1996), 427-482.
  • R.H. Chan, T. F. Chan, L.X. Shen, and Z.W. Shen, Wavelet Algorithms for high-Resolution Image Reconstruction, SIAM J. Sci. Comput., 24 (2003), 1408-1432.
  • R.H. Chan, C.W. ho, and M. Nikolova, Salt-and-Pepper Noise Removal by Median-type Noise Detectors and Detail-preserving Regularization, IEEE Trans. Image Proc., 14 (2005), 1479-1485.
  • X.H. Cai, R.H. Chan, and T.Y. Zeng, A Two-stage Image Segmentation Method using a Convex Variant of the Mumford-Shah Model and Thresholding, SIAM J. Imag. Sci., 6 (2013), 368-390.

Kwok Wai CHUNG

  • Xu, J. and Chung, K.W., Effects of time delayed position feedback on a van der Pol-Duffing oscillator, Physica D, 180(1), 17-39, (2003).
  • Xu, J., Chung, K.W., and Chan, C.L., An efficient method for studying weak resonant double Hopf bifurcation in nonlinear systems with delayed feedbacks, SIAM Journal of Applied Dynamical Systems, 6(1), 29-60, (2007).
  • Cao, Y.Y., Chung, K.W., and Xu, J., A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a Perturbation-Incremental method, Nonlinear Dynamics, 64, 221-236, (2011).
  • Qin, B.W., Chung, K.W., Rodriguez-Luis, A.J., and Belhaq, M., Homoclinic-doubling and homoclinic-gluing bifurcations in the Takens-Bogdanov normal form with D4 symmetry, Chaos, 28, 093107, (2018).
  • Algaba, A., Chung, K.W., Qin, B.W., and Rodriguez-Luis, A.J., Computation of all the coefficients for the global connections in the Z2-symmetric Takens-Bogdanov normal forms, Communications in Nonlinear Science and Numerical Simulation, 81, 105012, (2020).

Philippe G. CIARLET

  • CIARLET, P.G.; MARDARE, C., Nonlinear Korn inequalities, J. Math. Pures Appl. 104 (2015), 1119-1134.
  • AMROUCHE, C.; CIARLET, P.G.; MARDARE, C., On a lemma of Jacques-Louis Lions and its relation to other fundamental results, J. Math. Pures Appl. 104 (2015), 207-226.
  • CIARLET, P.G.; IOSIFESCU, O., Donati compatibility conditions on a surface - Application to shell theory, J. Math. Pures Appl. 102 (2014), 173-202.
  • CIARLET, P.G.; GEYMONAT, G.; KRASUCKI, F., A new duality approach to elasticity, Math. Models Methods Appl. Sci. 22 (2012), 1150003.
  • CIARLET, P.G.; CIARLET, JR., P. Direct computation of stresses in planar linearized elasticity, Math. Models Methods Appl. Sci. 19 (2009), 1043-1064.

Felipe CUCKER

  • Probabilistic Analysis of Condition Numbers, Acta Numerica, 25, pp. 321-382, 2016.
  • On a Problem Posed by Steve Smale (with P. Bürgisser). Annals of Mathematics, 174, pp. 1785-1836, 2011.
  • Coverage Processes on Spheres and Condition Numbers for Linear Programming (with P. Bürgisser and M. Lotz). Annals of Probability, 38, pp. 570-604, 2010.
  • Emergent Behavior in Flocks, (with S. Smale). IEEE Trans. Autom. Control, 52, pp. 852-862, 2007.
  • On the mathematical foundations of learning, (with S. Smale). Bulletin Amer. Math. Soc. 39, pp. 1-49, 2002.

Dan DAI

  • S.X. Xu and D. Dai, Tracy-Widom distributions in critical unitary random matrix ensembles and the coupled Painleve II system. Communications in Mathematical Physics, 365(2019), no. 2, 515-567.
  • D. Dai, M.E.H. Ismail and X.S. Wang, Doubly infinite Jacobi matrices revisited: Resolvent and spectral measure, Advances in Mathematics, 343 (2019), 157-192.
  • D. Dai, S.X. Xu and L. Zhang, Gap probability at the hard edge for random matrix ensembles with pole singularities in the potential, SIAM Journal on Mathematical Analysis, 50 (2018), no.2, 2233-2279.
  • S.X. Xu, D. Dai and Y.Q. Zhao, Critical edge behavior and the Bessel to Airy transition in the singularly perturbed Laguerre unitary ensemble, Communications in Mathematical Physics, 332 (2014), no. 3, 1257-1296.
  • D. Dai, M.E.H. Ismail and X.S. Wang, Plancherel-Rotach asymptotic expansion for some polynominals from indeterminate moment problems, Consturctive Approximation, 40 (2014), no. 1, 61-104.

Han FENG

  • Feng Dai and Han Feng, Riesz Transforms and Fractional Integration for Orthogonal Expansions on Spheres, Balls and Simplexes, Advance in Mathematics, 301(2016), 549-614.
  • Feng Dai and Han Feng, Chebyshev quadrature formulas on spheres, balls and simplexes, Trans. Amer. Math. Soc. 372 (2019), 7425-7460.
  • Han Feng, Christian Krattenthaler and Yuan Xu, Best Approximation on the triangle, Journal of Approximation, 241 (2019), 63-78.
  • Feng Dai, Han Feng and Sergey Tikhonov, Reverse Holder's inequality for spherical harmonics, Proceedings of American Mathematical Society, 144 (2016), no. 3, 1041-1051.
  • Han Feng, Uncertainty principles on weighted spheres, balls and simplexes, Canadian Mathematical Bulletin 59 (2016), no. 1, 62-72.

Daniel W. C. HO

  • Deming Yuan, Daniel W.C. Ho & Yiguang Hong, On Convergence Rate of Distributed Stochastic Gradient Algorithm for Convex Optimization with Inequality Constraints, SIAM Journal on Control and Optimization, 54(5), 2872-2892. (2016). http://epubs.siam.org/doi/abs/10.1137/15M1048896
  • Wenying Xu, Daniel W.C. Ho, Lulu Li and Jinde Cao, Event-Triggere Schemes on Leader-Following Consensus of General Linear Multi-Agent Systems under Different Topologies, IEEE Transactions on Cybernetics, Vol. 47, No. 1, 212-223, (2017). DOI: 10.1109/TCYB.2015.2510746
  • Bo Chen, Daniel W.C. ho, Wen-An Zhang and Li Yu, Networked Fusion Estimation with Bounded Noises, IEEE Transactions of Automatic Control, Vol.62, 10, 5415-5421, (2017). DOI: 10.1109/TAC.2017.2696746
  • Xiaodi Li, Daniel W.C. Ho and Jinde Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99, 361-368 (2019). https://doi.org/10.1016/j.automatica.2018.10.024
  • Zhong J. Daniel W.C. Ho, J. Lu & Q. Jiao, Pinning Controllers for Activation Output Tracking of Boolean Network Under One-Bit Perturbation, IEEE Transactions on Cybernetics, Vol: 49, 9, pages 3398-3408, (2019). DOI: 10.1109/TCYB.2018.2842819

Benny Y. C. HON

  • J. CHENG, Y. C. HON and M. YAMAMOTO, Conditional Stability Estimation for an Inverse Boundary Problem with Non-smooth Boundary Data in R3, Transactions of the American Mathematical Society, Vol. 353, pp. 4123–4138, 2001, (31/145 – Mathematics).
  • Y. C. HON and T. WEI, Backus-Gilbert Algorithm for a Cauchy Problem of Laplace Equation, Inverse Problems, Vol. 17, pp. 261–271, 2001. (Ranking: 17/138 – Applied Mathematics Category).
  • M. SU, X. XU, J. ZHU and Y. C. HON, Numerical Simulation of Tidal Bore in Hangzhou Gulf and Qiantangjiang, International Journal for Numerical Methods in Fluids, Vol. 36, pp. 205–247, 2001. (64/138 – Applied Mathematics).
  • Y. C. HON and R. SCHABACK, On Unsymmetric Collocation by Radial Basis Functions, Applied Mathematics and Computations, Vol. 119, Nos. 2–3, pp. 177–186, 2001. (113/138 – Applied Mathematics).
  • Y. C. HON and Z. WU, A Numerical Computation for Inverse Boundary Determination Problems, Engineering Analysis with Boundary Element, Vol. 24, pp. 599–606, 2000, (57/138 – Applied Mathematics, 11/60 – Engineering).

Xianpeng HU

  • X.Hu & N. Masmoudi, Global solutions to replusive Hookean elastodynamics, Arch. Ration. Mech. Anal. 223 (2017), 543-590.
  • X. Hu, Global existence of weak solutions to compressible viscoelasticity. J. Differential Equations 265 (2018), 3130-3167.
  • X. Hu, & Y. Huang, Well-posedness of the free boundary problem for incompressible elastodynamics. J. Differential Equations 266 (2019), 7844-7889.
  • X. Hu, Hausdorff dimensions of concentrations for isentropic compressible Navier-Stokes equations. Arch. Ration. Mech. Anal. 234 (2019), 375-416.
  • X. Hu, W. Zhao, Flobal existence of compressible dissipative elastodynamics systems with zero shear viscosity in two dimensions. Arch. Ration. Mech. Anal. (2019). https://doi.org/10.1007/s00205-019-01443-z.

Wonjung LEE

  • Lee, Wonjung. , Kovacic, Gregor. & Cai, David. (2018). Cascade model of wave turbulence. Physical Review E. 97. 062140.
  • Lee, Wonjung. (2018). Generalized Langevin equation and the linear regression model with memory. Physical Review E. 98. 022137.
  • Lee, Wonjung. & Zabaras, Nicholas. (2018). Parallel probabilistic graphical model approach for nonparametric Bayesian inference. Journal of Computational Physics. 372. 546.
  • Lee, Wonjung. & Stuart, Andrew. (2017). Derivation and Analysis of Simplified Filters. Communications in Mathematical Sciences. 15/2. 413 - 450.
  • Lee, Wonjung. & Lyons, Terry. (2016). The adaptive patched cubature filter and its implementation. Communications in Mathematical Sciences. 14/3. 799 - 829.

Heng LIAN

  • Heng Lian, Kaifeng Zhao and Shaogao Lv, Projected spline estimation of the nonparametric function in high-dimensional partially linear models for massive data, Annals of Statistics, 47, 2922-2949, (2019).
  • Heng Lian and Zengyan Fan, Divide-and-conquer for debiased 1-norm support vector machine in ultra-high dimensions, Journal of Machine Learning Research, 18, 1-26, (2018).
  • Shaogao Lv, Huazhen Lin, Heng Lian and Jian Huang, Oracle inequalities for sparse additive quantile regression in reproducing kernel Hilbert space, Annals of Statistics, 46, 781-813, (2018).
  • Kejun He, Heng Lian, Shujie Ma and Jianhua Huang, Dimensionality reduction and variable selection in multivariate varying-coefficient models with a large number of covariates, Journal of the American Statistical Association, 113, 746-754, (2018).
  • Heng Lian, Hua Liang and Raymond, J. Carroll, Variance Function Partially Linear Single-Index Models, Journal of the Royal Statistical Society, Series B, 77(1), 171-194, (2015).

Hongyu LIU

  • H. Liu, L. Rondi and J. Xiao, Mosco convergence for H(curl) spaces, higher integrability for Maxwell's equations, and stability in direct and inverse EM scattering problems,
    Journal of the European Mathematical Society (JEMS), 21 (2019), no. 10, 2945--2993.
  • Y. Deng, J. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring, Archive for Rational Mechanics and Analysis, 231 (2019), no. 1, 153--187.
  • H. Li, J. Li and H. Liu, On novel elastic structures inducing polariton resonances with finite frequencies and cloaking due to anomalous localized resonance, Journal de Math ematiques Pures et Appliqu ees, 120 (2018), 195--219. 
  • E. Bl asten and H. Liu, On vanishing near corners of transmission eigenfunctions, Journal of Functional Analysis, 273 (2017), 3616--3632.
  • J. Li, H. Liu, L. Rondi and G. Uhlmann, Regularized transformation-optics cloaking for the Helmholtz equation: from partial cloak to full cloak, Communications in Mathematical Physics, 335 (2015), 671--712.

Wing Cheong LO

  • Yue Liu, Michael P. Reichel & Wing-Cheong Lo, Combined control evaluation for Neospora caninum infection in dairy: economic point of view coupled with population dynamics, Veterinary Parasitology, (2019), 277:108967.
  • Wing-Cheong Lo & Shaokun Mao, A hybrid stochastic method with adaptive time step control for reaction-diffusion systems, Journal of Computational Physics, (2019), 379, 392-402.
  • Yanli Wang* & Wing-Cheong Lo* & Ching-Shan Chou, A modeling study of budding yeast colony formation and its relationship to budding pattern and aging, PLos Computational Biology, (2017), 13(11): E1005843. *Co-first author
  • Wing-Cheong Lo, Shaohua Zhou, Arthur D. Lander & Aing Nie, Robust and Precise Morphogen-mediated Patterning: Tradeoffs, onstraints and Mechanisms, Journal of Royal Society Interface, (2015), 12(102), 6, p20141041.
  • Wing-Cheong Lo, Edward W. Martin Jr., Charles L. Hitchcock and Avner Friedman, Mathematical Model of Colitis-associated Colon Cancer. Journal of Theoretical Biology, (2013), 317:20-29.

Ya Yan LU

  • Amgad Abdrabou & Ya Yan Lu, Indirect link between resonant and guided modes on uniform and periodic slabs, Physical Review A, Vol. 99, Art. 063818, June 2019.
  • Lijun Yuan and Ya Yan Lu, Bound states in the continuum on periodic structures surrounded by strong resonances, Physical Review A, Vol. 97, Art. 043828, April 2018.
  • Wangtao Lu, Ya Yan Lu, and Jianliang Qian, Perfectly-matched-layer boundary in- tegral equation method for wave scattering in a layered medium, SIAM Journal on Applied Mathematics, Vol. 78, No. 1, pp. 246-265, Jan. 2018.
  • Lijun Yuan and Ya Yan Lu, Bound states in the continuum on periodic structures: perturbation theory and robustness, Optics Letters, Vol. 42, No. 21, pp. 4490-4493, Nov. 2017.
  • Lijun Yuan and Ya Yan Lu, Robust iterative method for nonlinear Helmholtz equation, Journal of Computational Physics, Vol. 343, pp. 1-9, Aug. 2017.

Tao LUO

  • Hao, Chengchun &  Luo, Tao, Ill-Posedness of Free Boundary Problem of the Incompressible Ideal MHD. Commun. Math. Phys. (2019) doi:10.1007/s00220-019-03614-1.
  • Luo, Tao. & Zeng, Huihui, Global Existence of Smooth Solutions and Convergence to Barenblatt Solutions for the Pyhsical Vacuum Free Boundary Problem of Compressible Euler Equations with Damping, Comm. Pure Appl. Math. 69 (7), 1354-1396 (2016).
  • Federbush, Paul. , Luo, Tao. & Smoller, Joel, Existence of Magnetic Compressible Fluid Stars. Arch. Ration. Mech. Anal. 215/2.  611 - 631(2015).
  • Luo, Tao. , XIn, Zhouping. & Zeng, Huihui, Well-Posedness for the Motion of Physical Vacuum of the Three-dimensional Compressible Euler Equations with or without Self-Gravitation. Arch. Ration. Mech. Anal. 213/2. 763 - 831(2014).
  • Luo, Tao. & Smoller, Joel. Nonlinear Dynamical Stability of Newtonian Rotating and Non-rotating White Dwarfs and Rotating Supermassive Stars. Commun. Math. Physics. 425 - 457 (2008).

Cristinel MARDARE

  • Ciarlet, P.G., Mardare, C., Piersanti, P., An obstacle problem for elliptic membrane shells, Math. Mech. Dolids 24 (2019) 1503-1529.
  • Mardare, C., Static elasticity in a riemannian manifold, in "Differential Geometry and Continuum Mechanics" (eds. G-Q Chen, M. Grinfeld, R.J. Knops), Springer, 2015, 307-342.
  • Cartlet, P.G., Mardare, C., Existence theorems in intrinsic nonlinear elasticity, J. Math. Pures Appl. 94(2010), 229-243.
  • Mardare, C., C^∞-regularity of a manifold as a function of its metric tensor, Analysis and Applications 4 (2006), 19-30.
  • Lods, V., Mardare, C., Asymptotic justification of the Kirchhoff-Love assumptions for a linearly elastic clamped shell. J Elasticity. 58 (2000), 105-154.

Chenchen MOU

  • Gong, R.; Mou, C.; Swiech, A. Stochastic representations for solutions to parabolic Dirichlet problems for nonlocal Bellman equations. Ann. Appl. Probab. 29 (2019), no. 6, 3271-3310.
  • Ganbo, W,; Li, W.; Mou, C. Geodesics of minimal length in the set of probability measures on graphs. ESAIM Control Optim. Calc. Var. 25 (2019), Paper No. 78, 36 pp.
  • Guillen, N.; Mou, C.; Swiech, A. Coupling Levy measures and comparison principles for viscosity solutions. Trans. Amer. Math. Soc. 372 (2019), no. 10, 7327-7370.
  • Mou, C. Perron's method for nonlocal fully nonlinear equations. Anal. PDE 10 (2017), No. 5, 1227-1254.
  • Mou, C.; Yi, Y. Interior regularity for regional fractional Laplacian. Comm. Math. Phys. 340 (2015), no. 1, 233-251.

Pierre NOLIN

  • van den Berg, J., Kiss, D. & Nolin, P. (2018). Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters. Annales Scientifiques de l' Ecole Normale Superieure. 51, 1017-1084.
  • Beffara, V. & Nolin, P. (2011). On monochromatic arm exponents for 2D critical percolation. Annals of Probability. 39, 1286-1304.
  • Duminil-Copin, H., Hongler, C. & Nolin, P. (2011). Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Communications on Pure and Applied Mathematics. 64, 1165-1198.
  • Nolin, P. & Werner, W. (2009). Asymmetry of near-critical percolation interfaces. Journal of the American Mathematical Society. 22, 791-819.
  • Nolin, P. (2008). Critical exponents of planar gradient percolation. Annals of Probability. 36, 1748-1776.

Weifeng QIU

  • Huadong Gao and Weifeng Qiu, (2019). ``A semi-implicit energy conserving finite element method for the dynamical incompressible magnetohydrodynamics equations”, Computer Methods in Applied Mechanics and Engineering, volume 36, pages 982-1001.
  • Gusheng Fu, Yanyi Jin and Weifeng Qiu, (2019), `` Parameter-free superconvergent H(div)-conforming HDG methods for the Brinkman equations”, IMA Journal of Numerical Analysis, Volume 39, pages 957-982.
  • Weifeng Qiu, Jiguang Shen and Ke Shi, (2018), `` An HDG method for linear elasticity with strong symmetric stresses”, Mathematics of Computation,  Volume 87, pages 69-93.
  • Bernardo Cockburn, Weifeng Qiu and Manuel Solano, (2014), `` A priori error analysis for HDG methods using extensions rom subdomains to achieve boundary conformity”, Mathematics of Computation, Volume 83, pages 665-699.
  • Jay Gopalakrishnan and Weifeng Qiu, (2014), `` An analysis of the practical DPG method”, Mathematics of Computation, Volume 83, pages 537-552.

Stephen SMALE

  • M. SHUB and S. SMALE, Complexity and Bezout's Theorem IV: Probability of Success, Extensions, to appear in SIAM J. of Numerical Analysis. Feb '96.
  • M. SHUB and S. SMALE, Complexity of Bezout's Theorem V: Polynomial time, Theoretical Computer Science, (1994) pp 141–164.
  • M. SHUB and S. SMALE, On the Intractability of Hilbert's Nullellensatz and an Algebraic Version of "NP ≠ P?", to appear in Duke Math. J. (special volume honoring John Nash).

Roderick S. C. WONG

  • W.-Y. QIU and R. WONG, Uniform Asymptotic Formula for Orthogonal Polynomials with Exponential Weight, SIAM J. Math. Anal., 31 (2000), 992–1029.
  • C.-K. QU and R. WONG, "Best Possible" Upper and Lower Bounds for the Zeros of the Bessel Function, Trans. Amer. Math. Soc., 351 (1999), 2833–2859.
  • X.-H. JIANG and R. WONG, Justification of a Perturbation Approximation of the Klein-Gordon Equation, Studies Appl. Math., 102(1999), 375–417.
  • Y.-Q. ZHAO and R. WONG, Smoothing of Stokes Discontinuity for the Generalized Bessel Function II, Proc. Roy. Soc. Lond. Ser. A, 455 (1999), 3065–3804.
  • X.-S. JIN and R. WONG, Uniform Asymptotic Expansions for Meixner Polynomials, Constr. Approx., 14 (1998), 113–150.

Jonathan WYLIE

  • J. J. Wylie, B. H. Bradshaw-Hajek & Y. M. Stokes "The evolution of a viscous thread pulled with a prescribed speed" Journal of Fluid Mechanics 795, 380 (2016).
  • J. J. Wylie, H. Huang & R. M. Miura "Stretching of viscous threads at low Reynolds numbers" Journal of Fluid Mechanics 683, 212 (2011)
  • S. Ben Hariz, J. J. Wylie & Q. Zhang, "Optimal rate of convergence for nonparametric change-point estimators for non-stationary sequences", Annals of Statistics 35, 1802 (2007).
  • J. J. Wylie, Q. Zhang & X. X. Sun, "Anomalous Ritchmyer-Meshkov Fingering in Dissipative Particle Systems", Physical Review Letters 97, 104501 (2006).
  • J. J. Wylie, B. Voight & J. A. Whitehead, "Instability of magma flow with volatile-dependent viscosity", Science 285, 1883 (1999).

Wei XIANG

  • Chen, G.G., Huang, F., Wang, T. & Xiang W., (2019), Steady Euler flows with large vorticity and characteristic discontinuities in arbitrary infinitely long nozzles, Advances in Mathematics. 346, 946-1008.
  • Cheng, J., Du, L. & Xiang, W. (2019), Incompressible Jet Flows in a de Laval Nozzle with Smooth Detachment, Archive for Rational Mechanics and Analysis, 232, 1031-1072.
  • Qu, A. & Xiang W., (2018), Three-Dimensional Steady Supersonic Euler Flow Past a Concave Cornered Wedge with Lower Pressure at the Downstream, Archive for Rational Mechanics and Analysis, 228, 431-476.
  • Deng, X., Wang, T. & Xiang, W. (2018), Three-Dimensional Full Euler Flows with Nontrivial Swirl in Axisymmetric Nozzles, SIAM Journal on Mathematical Analysis, 50, 2740-2772.
  • Chen, G., Deng, X. & Xiang, W. (2014), Shock Diffraction by Convex Cornered Wedges for the Nonlinear Wave System, Archive for Rational Mechanics and Analysis, 211, 61-112.

Tong YANG

  • Wei-xi Li and Tong Yang, Well-posedness in Gevrey function space for the Prandtl equations with non-degenerate critical points, accepted for publication in Journal of European Mathematical Society.
  • Chengjie Liu, Feng Xie and Tong Yang, MHD boundary layers in Sobolev spaces without monotonicity. I. Well-posedness theory, Communications on Pure and Applied Mathematics, vol. LXXII, 0063-0121 (2019).
  • Yoshinori Morimoto, Tong Yang and Huijiang Zhao, Stability of Self-similar Solutions to the Homogeneous Boltzmann Equation, Journal of European Mathematical Society, 19, 2041-2067 (2017).
  • Radjesvarane Alexandre, Yaguang Wang, Chao-Jiang Xu and Tong Yang, Well- posedness of The Prandtl Equation in Sobolev Spaces, Journal of American Mathematical Society, 28(3), 745-784 (2015).
  • Tai-Ping Liu and Tong Yang, L1 stability of weak solutions for 2 x 2 systems of hyperbolic conservation laws, Journal of American Mathematical Society, 12, 729-774 (1999).

Shun ZHANG

  • Z. Cai, C. He, & S. Zhang, (2017), Discontinuous Finite Element Methods for Interface Problems: Robust A Priori and A Posteriori Error Estimates, SIAM Jounral on Numerical Analysis, 55(1), 400-418.
  • J.S. Hesthaven & S. Zhang, (2016), On the Use of ANOVA Expansions in Reduced Basis Methods for Parametric Partial Differential Equations, Journal of Scientific Computing, 69(1), 292-313.
  • J.S. Hesthaven, B. Stamm & S. Zhang, (2014), Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods, ESAIM: Mathematical Modelling and Numerical Analysis, 48(1), 259-283.
  • Z. Cai, X. Ye, & S. Zhang (2011), Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations, SIAM Journal on Numerical Analysis, 49 (5), 1761-1787.
  • Z, Cai & S. Zhang (2009), Recovery-based error estimator for interface problems: Conforming linear elements, SIAM J. Numer. Anal, 47 (3), 2132-2156.

Chao ZHOU

  • Lee, J. and C. Zhou. Binary funding impacts in derivative valuation, Mathematical Finance, 2021, 31(1): 242-278.
  • Horst, U., Xia, X. and C. Zhou. Portfolio liquidation under factor uncertainty, 2021. The Annals of Applied Probability, to appear.
  • Popier, A. and C. Zhou. Second order BSDE under monotonicity condition and liquidation problem under uncertainty, The Annals of Applied Probability, 2019, 29(3): 1685-1739.
  • Possamaï, D., Tan, X., and C. Zhou. Stocahastic control for a class of nonlinear kernels and applications, The Annals of Probability, 2018, 46(1):551-603.
  • Matoussi, A., Possamaï, D., and C. Zhou. Robust Utility Maximisation in Non-dominated Models with 2BSDEs, Mathematical Finance, 2015, 25(2): 258-287.

Xiaosheng ZHUANG

  • Wang, Y. G. & Zhuang, X. (2020), Tight framelets and fast framelet filter bank transforms on manifolds. Applied and Computational Harmonic Analysis, 48(1): 64-95.
  • Han, B., Mo, Q., Zhao, Z. & Zhuang, X. (2019), Directional compactly supported tensor product complex tight framelets with applications to image denoising and inpainting. SIAM Journal on Imaging Sciences, 12 (4): 1739-1771.
  • Han, B., Li, T., & Zhuang, X. (2019), Directional compactly supported box spline tight framelets with simple geometric structure, Applied Mahtematics Letters, 91: 213-219.
  • Che, Z. & Zhuang, X. (2018), Digital affine shear filter banks with 2-Layer structure and their applications in image processing. Transactions on Image Processing, 27(8): 3931-3941.
  • Han, B., Jiang, Q.T., Shen, Z.W. & Zhuang, X. (2018), Symmetric canonical quincunx tight framelets with high vanishing moments and smoothness. Mathematics of Computation. 87 (309): 347-379.

 

 

Last update: 13 April 2021