SEEM4059: PROCESS MONITORING AND INSPECTION TECHNIQUES

Effective Term Summer Term 2023

Part I Course Overview

Course Title
Process Monitoring and Inspection Techniques
Subject Code

SEEM - Systems Engineering and Engineering Management Course Number 4059

Academic Unit Systems Engineering (SYE)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites MA1201 Calculus and Basic Linear Algebra II or MA2172 Applied Statistics for Sciences and Engineering or Equivalent

Precursors Nil

Equivalent Courses MBE4059/JC4059 Process Monitoring and Inspection Techniques

Exclusive Courses Nil

Part II Course Details

Abstract

The aim of this course is to introduce effective methodology for monitoring prime manufacturing process and equipment so that their quality and maintainability can be guaranteed. The methodology is derived from advanced non-destructive evaluation methods with their related measurement methods and test tools. After completing the course, the students are expected to be capable of selecting suitable method(s) for measuring the health and analyzing the quality of a prime type/piece of process/equipment commonly used in industry. The students should also be able to design an effective and practical measurement and test platform for performing the required quantitative analysis on the process/equipment. The content of this course is especially designed to partially comply with the requirements of Certified Quality Engineer.

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Describe the maintainability of process/ equipment used in some prime manufacturing and the importance of quantitative measurement applied to such process/ equipment.	17	х		
2	Determine the scope of application, cost, benefits and constraints of popular non- destructive evaluation methods, their required tools and quantitative methods for assessing the quality and maintainability of the process/ equipment.	17	X		
3	Analyze the data/signals collected from the process/equipment so that the current health and availability of that process/equipment can be realized.	33		x	
4	Design effective quantitative measurement and monitoring methods for the process/equipment to minimize the occurrence of anomalous operating condition and the rate of degradation from the quality standards.	33		X	x

Course Intended Learning Outcomes (CILOs)

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

TLAs	Brief Description	CILO No.	Hours/week (if applicable)
Lecture and In- class discussion &	There will be 24 hours for lecturing key issues	1, 2, 3, 4	2 hours/week
performance(Large class)	related to advanced		
	process/equipment for		
	health monitoring and		
	quality inspection. Some		
	of the key syllabuses		
	are listed in Part III.		
	The amount of lecturing		
	hours will be partitioned according to the CILOs as		
	aforementioned. Real and		
	practical industrial cases		
	will be used to explain		
	the theories introduced		
	during the lecture hours.		
	Live demonstration		
	will also be given to		
	illustrate the functions		
	and effectiveness of		
	each measurement		
	method and tools that		
	is applying to a selected		
	process/equipment.		
	Besides the regular		
	lecture, there are in-class		
	discussion and feedback,		
	which are monitored		
	to assess the individual		
	student performance.		
	Questions, which are		
	related to industrial		
	and real cases, will be		
	given to students during		
	class time. The students		
	should study these		
	case studies and gather		
	related information from		
	different sources, such		
	as newspapers, Internet		
	etc. The students are		
	expected to provide their own opinions and		
	comments of these case		
	studies in the class. Then		
	during the lectures, a number of questions		
	will be raised and each		
	student is encouraged to		
	provide his/her views and		
	feedbacks. The responses		
	given by each students		
	will be assessed and		
	marked.		

2	Laboratory (Small class)	A total of 4 sessions and	1, 2, 3, 4	15 hours/semester
		the fifth session is for		
		laboratory (lab) make-		
		up. Each session has 3		
		hours for performing		
		the required laboratory		
		works. The main purpose		
		is to allow the students to		
		have hands-on experience		
		on learned knowledge.		
		Some of the planned		
		laboratories could be		
		but not limited as:		
		the use of the Smart		
		Asset Maintenance		
		System (SAMS) for		
		performing quantitative		
		measurement in		
		quality on selected		
		manufacturing		
		machines, familiarization		
		of thermography and		
		the use of infrared		
		camera to monitor		
		selected electronic		
		circuitry production		
		line in the compliance		
		of some prime quality		
		standards, familiarization		
		of vision inspection and		
		the use of digital image		
		processing to monitor the		
		operation and measure		
		the performance of		
		selected manufacturing		
		8		
		process, the use of		
		laser techniques in		
		quality inspection for		
		manufacturing process/		
		equipment, and the use		
		of virtual instrument		
		tools in developing		
		instrumentation		
		platform for performing		
		monitoring and quality		
L		inspection.		

3	Presentation(Large class)	Competitive	3, 4	2 hours/ semester
0		Presentations: Students	0, 1	
		will work in groups on the		
		design of effective quality		
		monitoring strategies for		
		a specific type of process/		
		equipment commonly		
		used in industry. Their		
		efforts and outcomes		
		will be reported in the		
		term paper as well as in a		
		competitive presentation		
		which will be held in the		
		last week of the lecture.		
		At the end of each group		
		presentation, the other		
		groups of student are		
		compulsory to criticize		
		the presented group		
		by asking questions on		
		the presentation. The		
		instructor(s) will also		
		make comment based		
		on the presentation.		
		Through the responses		
		made by the presented		
		group and the content of		
		the presentation, ranks		
		will be given to each		
		group. Each group will		
		have a rank and such rank		
		will not be repetitive.		
		The instructor(s) will		
		give mark to each group		
		based on her assigned		
		rank. Each group will		
		have a unique rank and		
		mark, and there must be		
		a highly ranked group		
		will receive high mark,		
		whilst, the group that		
		ranked the lowest will		
		receive the lowest mark.		
		Hence, the presentations		
		are competitive.		
4	Consultation Hours	Consultation hours will	1, 2, 3, 4	2 hour/week
		be used to facilitate	, -, -, -	
		discussions of various		
		issues related to the		
		content of lectures,		
		laboratory work and		
		reports and term project.		
		reports and term project.		

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Term projects	1, 2, 3, 4	50	
2	Assignments/Lab Reports/ In-class discussion and performance	1, 2, 3, 4	40	
3	Competitive Presentations	3, 4	10	

Assessment Tasks / Activities (ATs)

Continuous Assessment (%)

100

Examination (%)

0

Assessment Rubrics (AR)

Assessment Task

Term project

Criterion

The term projects and their reports will contribute 50% of the final assessment. Each group of students must submit the reports for all term projects. To facilitate individual assessment, each student in a particular group must also submit his own detailed section of contribution (called 'individual section'). In the individual section, each student must define clearly his role, the amount of work done, and the portion of his own contribution (in percentage) in completing the term projects. The student should also include his own discussion and conclusion in each report to verify his degree of understanding the term projects. The final mark given to each student may be varied due to the student' s actual contribution and achieved efforts toward the term projects. Moreover, there are in-class discussion and feedback and monitored by individual performance (12%). Different marks will be given to those student who have been actively involved in the discussion and provided sound feedbacks accordingly.

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Assignments/ Lab Reports/In-class discussion and performance

Criterion

A total of 4 assignments will be given to students. Each assignment has a number of questions that are related to the course content and the above laboratory work. The students are expected to spend at least 4 hours for completing each assignment.

The main purpose is to check the students whether they have earned the expected learning outcomes and possessed the analytical skill to solve the problems given in each assignment. Each assignment will be given after completing each laboratory work. The 4 assignments will contribute equally to the total mark of 28% with 7% per assignment. Students must attend all 4 laboratory sessions. After completing each laboratory session, the students must submit an assignment that provide answers to the questions given in the lab sheet. Each assignment will be have a time of three weeks to complete. That is, every 3 weeks, there will be an assignment given to students.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Competitive Presentation

Criterion

20% of the coursework will be given for the presentations of the term-projects. Each student in a group must involve in the presentation as one of presenter(s) of their group term project. Ranking of the performance in presentation will be given based on the quality and clarity of the presentation and the presented contents. Questions and comments, either from the course examiner or the students, are encouraged to be given after each presentation.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Introduction to Prime Manufacturing Process and Equipment Introduction to Maintainability and Availability Brief Introduction to Safety of Machinery Brief Introduction to Non-Destructive Evaluation Methods

Quantitative Measurement Methods and Tools used in Condition Monitoring and Quality Inspection

Basic Vibration-based Manufacturing Process/Equipment Monitoring

Fundamental Vision-based Quality Inspection

The Use of Thermography, Laser and other Advanced Technologies in Manufacturing Process/Equipment Monitoring Design and Planning of Effective Measurement and Test Platform for Quality Monitoring of Manufacturing Process/ Equipment

Industrial Case Study and Demonstration

Reading List

Compulsory Readings

	Title
1	Jil

Additional Readings

	Title
1	Tse P. et al, Smart Asset Maintenance System (SAMS) - User Manual, Smart Engineering Asset Management Laboratory (SEAM®).
2	Tlusty G., Manufacturing Process and Equipment, Prentice Hall, (ISBN 0-201498650).
3	Bently D., Hatch C. and Grissom B, Fundamentals of Rotating Machinery Diagnostics, Bently Pressurized Bearing Company, (ISBN 0-9714081-0-6).
4	Russ John, Introduction to Image Processing and Analysis, CRC Press, (ISBN 9780849370731).
5	Dodson B., The Weibill Analysis Handbook, 2nd edit., ASQ Quality Press, (TS 173 .D63 2006). Software included.