SEEM4026: SYSTEMS MODELLING, OPTIMIZATION AND SIMULATION

Effective Term Summer Term 2023

Part I Course Overview

Course Title Systems Modelling, Optimization and Simulation

Subject Code SEEM - Systems Engineering and Engineering Management Course Number 4026

Academic Unit Systems Engineering (SYE)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites MA2172 Applied Stats for Science & Engineering or MA2177 Engineering Mathematics and Statistics

Precursors Nil

Equivalent Courses MEEM4026 Systems Modelling and Simulation/ADSE4036 Manufacturing Systems Modelling and Optimization

Exclusive Courses Nil

Part II Course Details

Abstract

The aim of this course is to introduce various system modelling and simulation techniques, and highlight their applications in different areas. It includes modelling, design, simulation, planning, verification and validation.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Outline the usefulness of system modelling and simulation.	10			
2	Apply the mathematical equations for modelling the behaviour of given systems in areas such as manufacturing, logistic and service.	25	Х		
3	Use a range of manual processes to model and simulate the given systems.	25	X		
4	Use a range of commercial software packages to construct, verify and validate models of the given systems.	40	Х	x	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Large class activities	The large class activities include mainly lectures. Each student needs to conduct a mini-project.	1, 2, 3, 4	30 hours/semester

Teaching and Learning Activities (TLAs)

2	LaboratoryWork	The first laboratory is to let students get starting with the System Modelling and Simulation Software. The second laboratory is to let students work with the System Modelling and	1, 2, 3, 4	9 hours/semester
		last laboratory is to let students apply the System Modelling and Simulation Software.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Laboratory Report (100%):Base on laboratory report: iExperimental results (50%)iiResult analysis and discussion (50%)Laboratory reports will be marked according to the requirement described on the lab sheets.	1, 2, 3, 4	30	

2	Mini project Depart	1 2 2 4	20	
L _	Mini-project Report (100%):Base on	1, 2, 3, 4	20	
	project report and			
	program demonstration			
	iApplication of			
	mathematical equations			
	to describe the problem.			
	(20%)iiConstruction of			
	the model to describe			
	the problem (20%)			
	iiiDemonstration of			
	the constructed model			
	(40%)ivDiscussion on			
	the verification and			
	validation of the model			
	(20%). Each mini project			
	work will be given a			
	problem to solve. Each			
	student needs to outline			
	the capability that system			
	modelling and simulation			
	can do. Also, it needs to			
	describe and apply the			
	mathematical equations			
	for modelling the given			
	problem. Then use a			
	commercial software			
	package to construct,			
	verify and validate the			
	built model.			

Continuous Assessment (%)

50

```
Examination (%)
```

50

Examination Duration (Hours)

2

Assessment Rubrics (AR)

Assessment Task

Laboratory Report

Criterion

Base on laboratory report: Experimental results (50%)Result analysis and discussion (50%)Laboratory reports will be marked according to the requirement described on the lab sheets.

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Mini-project Report

Criterion

Base on project report and program demonstration Application of mathematical equations to describe the problem. (20%)Construction of the model to describe the problem (20%) Demonstration of the constructed model (40%)Discussion on the verification and validation of the model (20%). Each mini project work will be given a problem to solve. Each student needs to outline the capability that system modelling and simulation can do. Also, it needs to describe and apply the mathematical equations for modelling the given problem. Then use a commercial software package to construct, verify and validate the built model.

Excellent (A+, A, A-) High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Examination

Criterion

Students will be assessed by testing their understanding of the concepts learnt in class, textbooks, and their ability to apply subject related knowledge.

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Statistical models in simulation, queuing models, random number generation, random variate generation, ARENA, entity transfer, steady-state statistical analysis, and model verification and validation.

Reading List

Compulsory Readings

	Title
1	Nil

Additional Readings

ſ		Title
	1	Simulation with Arena, 6th Edition, W. David Kelton, Randail P. Sadowski, David T. Sturrock, 2015.
	2	Discrete-Event System Simulation, 5th Edition, Jerry Banks, John S. Carson II, Barry L. Nelson, David M. Nicol, 2013.