SEEM3034: WORK DESIGN

Effective Term

Summer Term 2023

Part I Course Overview

Course Title

Work Design

Subject Code

SEEM - Systems Engineering and Engineering Management

Course Number

3034

Academic Unit

Systems Engineering (SYE)

College/School

College of Engineering (EG)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

Nil

Precursors

Nil

Equivalent Courses

MEEM3034/MBE3034/JC3034 Work Design

Exclusive Courses

Nil

Part II Course Details

Abstract

The aim of this module is to provide students an understanding of the principles and techniques used in the improvement and measurement of work methods and procedures, as well as creating effective and efficient organisation structures and

systems over a wide field of commercial, administrative and manufacturing activities. The objective is to equip students with the ability to use and apply the techniques of method study, work measurement, motion study and organisation study to improve productivity in different industries.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	to identify the poor productivity area(s) of a system		X	X	X
2	to list different activities in the work study			X	X
3	to describe the existing operation of the system by the charting and diagram techniques.			Х	X
4	to evaluate the existing system by the principles and techniques of work measurement, motion study and organization study.			x	X
5	to propose improvements to the system to address problems identified in the evaluation		X		X
6	to recognize the features and difficulties of installation and maintenance of a new system.		X		X
7	to work effectively as a team member in laboratory activities and mini-project		X		X

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Large ClassActivities	The large class activities include mainly lectures.	1, 2, 3, 4, 5, 6	26 hours/semester
2	LaboratoryWork	There will be three laboratory sessions.	3, 4, 5, 7	12 hours/semester
3	Consultation Hours	Consultation hours will be used to facilitate discussions of various issues related to the lecture materials, mini- projects, and tutorial questions.	1, 2, 3, 4, 5, 6, 7	1 hour/week/25 students

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Three Laboratory ReportsThree laboratory activities will be well designed to develop students' understanding and interests of the course materials in improving the design of work system.	3, 4, 5, 6, 7	20	
2	One Mini-project ReportStudents need to form working groups of three to four members for the mini project. They may choose any topics related to the course syllabus. Advices will be given on the feasibility, approach, methodology, and expected deliverables of the mini project. An oral presentation will be given.	1, 2, 3, 4, 5, 7	20	
3	Quiz scoresA midterm quiz is arranged for testing the basic concepts and principles. It comprises of multiple choice questions and short question.	1, 2, 3, 4, 5, 6	10	

Continuous Assessment (%)

50

Examination (%)

50

Examination Duration (Hours)

2

Assessment Rubrics (AR)

Assessment Task

Laboratory activities

Criterion

ABILITY to CONDUCT experiments and EXPLAIN the methodology and procedure, and PREPARE technical reports.

Excellent (A+, A, A-)

High

Excellent (A+, A, A-)

SEEM3034: Work Design

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Examination

Criterion

ABILITY to DIAGNOSE and GIVE SOLUTIONS to workplace ergonomics problems.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Productivity Measurement and Indices. Standards and Work Methods Design. SREDIM Approach of Method Study. Principles of Motion Economy. Time Study Techniques: performance rating and allowances. Standard Data and Formulas. Work Sampling. Learning Curve. Multi-factor Wage Incentive Plans. Job shop and flow shop. Assembly line balancing.

Reading List

Compulsory Readings

	itle
1	il

Additional Readings

	Title
1	Niebel's Methods, Standards and Work Design, Andris Freivalds, and Benjamin W. Niebel, 13th Ed., 2013.
2	Work Systems and the Methods, Measurement, and Management of Work, Mikell P. Groover, Pearson Prentice Hall, 2007.