SEE4204: ENVIRONMENTAL SYSTEMS MODELLING

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title

Environmental Systems Modelling

Subject Code

SEE - School of Energy and Environment

Course Number

4204

Academic Unit

School of Energy and Environment (E2)

College/School

School of Energy and Environment (E2)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

MA2181 Mathematical Methods for Engineering; SEE1002 Introduction to Computing for Energy and Environment; AND SEE2003 Introduction to Energy and Environmental Data Analysis

Precursors

Nil

Equivalent Courses

Nil

Exclusive Courses

Nil

Part II Course Details

Abstract

This course aims to instruct students to learn how environmental phenomena works as systems and how to use models to better understand the environmental systems and to solve environmental problems. Students will learn basic concepts and strategies for building simple models, designing model experiments, and evaluating model results. Various environmental applications using modelling from a variety of disciplines (e.g. air and water) will also be introduced.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Describe the modelling aspects of environmental systems	10	X		
2	Demonstrate principles and concepts underlying environmental models	40	X		
3	Apply simple model simulations to explain environmental phenomena	20		x	X
4	Design modelling strategies to solve environmental problems	30		x	X

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Explain key concepts, such as principles related to environmental modelling	1, 2	
2	Tutorial / Computational Labs	Hands-on training on environmental modelling application	2, 3, 4	

Assessment Tasks / Activities (ATs)

	ATs	CILO No.		Remarks (e.g. Parameter for GenAI use)
1	Assignment	1, 2, 3	35	
2	Term Project	3, 4	25	

Continuous Assessment (%)

Examination (%)

40

Examination Duration (Hours)

2

Additional Information for ATs

Examination duration: 2 hours

Percentage of coursework, examination, etc.: 60% by coursework; 40% by exam

To pass a course, a student must do ALL of the following:

- 1) obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3) meet the criteria listed in the section on Assessment Rubrics.

Assessment Rubrics (AR)

Assessment Task

1. Assignment

Criterion

Ability to describe the principles and mechanisms, and solve problems related to environmental systems modelling

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

2. Term project

Criterion

Ability to design modelling strategies for a real-world environmental problem

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

4 SEE4204: Environmental Systems Modelling

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

3. Final exam

Criterion

Ability to explain concepts and solve problems

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Environmental systems

· Systems thinking; Environmental behaviour pattern; Feedback

Model building and equations

· Pollution transport; Continuity equation; Dynamic modelling; Kinetic modelling; Data-based mechanistic modelling; Eulerian model; Lagrangian approaches; Python, R language and/or MATLAB

Strategies for environmental systems modelling

· Model experiment design; Environmental data; Model validation

Application in environmental systems modelling

· Matter cycling; Water quality model; Atmospheric model; Ecosystem model; Case study

Reading List

Compulsory Readings

	itle
1	Til

Additional Readings

	Title
1	Wainwright, J. (2012). Environmental Modelling: Finding Simplicity in Complexity 2nd Edition. West Sussex, UK: Wiley.
2	Deaton, M. (2000). Dynamic Modelling of Environmental Systems, Springer, 2000.