SEE4120: MATERIALS ENGINEERING FOR ENERGY APPLICATIONS

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title

Materials Engineering for Energy Applications

Subject Code

SEE - School of Energy and Environment
Course Number
4120
Academic Unit
School of Energy and Environment (E2)
College/School
School of Energy and Environment (E2)
Course Duration
One Semester
Credit Units
3
Level
B1, B2, B3, B4 - Bachelor's Degree
Medium of Instruction
English
Medium of Assessment
English

Prerequisites

SEE2001 Electromagnetic Principles for Energy Engineers or equivalent;
SEE2002 Chemical Sciences for Energy and Environmental Engineers or equivalent; and
SEE2101 Engineering Thermofluids I or equivalent
Precursors
Nil

Equivalent Courses
Nil

Exclusive Courses

Part II Course Details

Abstract

Materials is an essential component for sustainable development. For example, wind turbines and dam require the use of structural materials; solar cells require the use of electrical and optical materials; heating/cooling and energy storage require the use of materials with phase change/transformation; batteries require the use of materials with diffusive properties. This course will introduce basic materials structure, properties and characterizations, and apply them to energy applications.

Course Intended Learning Outcomes (CILOs)

CILOs		Weighting (if DEC-A1 app.)		DEC-A2	
1	Discover the different materials for sustainable development	10	x	x	
2	Describe the fundamental materials properties and characterization methods associated with different energy technologies	40	x		
3	Analyze mechanical and thermal systems for energy applications	50	x		

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability
Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

TLAs		Brief Description		CILO No. applicable)
1	Lecture	Explain key concepts, such as materials properties related to energy systems	$1,2,3$	2.5
2	Tutorial sessions	Solidify students' concepts with practice and examples	$1,2,3$	0.5

Assessment Tasks / Activities (ATs)

ATs		CILO No.	Weighting (\%)	Remarks (e.g. Parameter for GenAI use)
1	In-class test	$1,2,3$	20	
2	Assignment	$1,2,3$	40	

Continuous Assessment (\%)

Examination (\%)

40
Examination Duration (Hours)
2

Additional Information for ATs

Examination duration: 2 hrs
Percentage of coursework, examination, etc.: 60% by coursework; 40% by examination

To pass a course, a student must do ALL of the following:

1) obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and
3) meet the criteria listed in the section on Assessment Rubrics.

Assessment Rubrics (AR)

Assessment Task

1. In-class test

Criterion

Ability to describe and analyse materials properties and characterizations
Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic
Failure (F)
Not even reaching marginal levels

Assessment Task

2. Assignment

Criterion

Ability to evaluate and analyse questions related to materials properties and characterization
Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate

Marginal (D)

Basic
Failure (F)
Not even reaching marginal levels

Assessment Task

3. Final exam

Criterion

Ability to analyse and solve practical problems related to energy applications

Excellent (A+, A, A-)

High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

- Materials classifications and properties
- Crystal structures and defects
- Stress and strain
- Microstructure and characterization
- Phase transformation, phase diagram and diffusion
- Electric and optical properties of materials
- Applications to energy applications
- Materials selection and criteria

Reading List

Compulsory Readings

Title	
1	Nil

Additional Readings

Title	
1	Sustainable thermal storage systems: planning, design, and operations, Lucas B. Hyman, McGraw-Hill, 2011.
2	Engineering Material 1, Michael F. Ashby and David R. H. Jones, Butterworth Heineman, 1997.

3	Engineering Material 2, Michael F. Ashby and David R. H. Jones, Butterworth Heineman, 1997.
4	Engineering Materials Science, Milton Ohring, Academic Press 1995.
5	The Mechanics of Engineering Structures, David W. A. Rees, Imperial College Press, 2015.
6	Materials Science for Engineers, James F. Shackelford, 6th edition, Prentice Hall, 2005.
7	Introduction to Structural Analysis \& Design, S. D. Rajan, John Wiley \& Sons, Inc. 2001.
8	Examples in Structural Analysis, William M. C. McKenzie, Taylor \& Francis, 2006.
9	Materials Selection in Mechanical Design, 5th edition, Michael F. Ashby, Elsevier, 2017.

