SEE3003: CLIMATE CHANGE AND ADAPTATION STRATEGIES

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title

Climate Change and Adaptation Strategies

Subject Code

SEE - School of Energy and Environment

Course Number

3003

Academic Unit

School of Energy and Environment (E2)

College/School

School of Energy and Environment (E2)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

PHY1201 General Physics I;

MA1200 Calculus and Basic Linear Algebra I or

MA1300 Enhanced Calculus and Linear Algebra I; AND

MA1201 Calculus and Basic Linear Algebra II or

MA1301 Enhanced Calculus and Linear Algebra II

Precursors

Nil

Equivalent Courses

Nil

Exclusive Courses

Nil

Part II Course Details

Abstract

This course aims to develop a fundamental appreciation and understanding of climate change and adaptations to climate change issues. Upon completion, students are expected to be able to present a balanced perspective on climate change and adaptations. The course will various meteorological and geological topics including, Earth's climate system, Weathering and soils, Groundwater and wetlands, Oceans and coastlines, Climate Change and greenhouse gas emission trends, Mitigation and adaptation to climate change.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Explain the scale and process of climate system, climate change and greenhouse gas emission trends	20	x		x
2	Relate physical and chemical principles to the process of weathering and soils, groundwater and wetlands, oceans and coastlines, and greenhouse gas emission	30		x	x
3	Apply strategies to solve weathering and soils, groundwater and wetlands, oceans and coastlines problems, and greenhouse gas emission	35		x	x
4	Demonstrate critical thinking skills in global environmental change and societal adaption strategies	15	х	х	x

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture and Tutorial	Lecture and Tutorial explain key concepts, such as physical and chemical principles to the process of soil erosion and conservation, approaches to flood control, sea level rise	1, 2, 3, 4	

2	Group Project	Group Project requires	2, 3, 4	
		students to find a solution		
		to a climate change-		
		related issue, such as soil		
		erosion and conservation,		
		approaches to flood		
		control, and/or sea level		
		rise		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Homework Assignment There will be 6-8 assignments throughout the semester. Students will complete the assignments to demonstrate their ability to apply their knowledge in topics related to climate change and adaptation strategies.	1, 2, 3, 4	18	Approximately 6-8 problem sets
2	In-Class Tutorial Exercise There will be 3-4 assignments throughout the semester. Students will complete the tutorial as a group in class to strengthen their understanding on the topics related to climate change and adaptation strategies.	1, 2, 3, 4	2	Approximately 3-4 Inclass tutorial exercises
3	Group Project There will be 1 group project for students to demonstrate their self- directed learning to study the principles of climate change and climate adaptation	1, 2, 3, 4	20	1 group project
4	Midterm Quiz There will be 1 midterm quiz for instructor to assess students' learning progress on the concepts as outlined in "Lecture and Tutorial".	1, 2	20	1 midterm quiz

Continuous Assessment (%)

4 SEE3003: Climate Change and Adaptation Strategies

Examination (%)

40

Examination Duration (Hours)

2

Additional Information for ATs

Examination duration: 2 hrs

Percentage of coursework, examination, etc.: 60% by coursework, 40% by exam

To pass a course, a student must do ALL of the following:

- 1) obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3) meet the criteria listed in the section on Assessment Rubrics.

Assessment Rubrics (AR)

Assessment Task

1. Homework Assignment

Criterion

Ability to explain in detail and with accuracy method

Excellent (A+, A, A-)

Excellent analysis and problem-solving skills to demonstrate in-depth understanding of climate change and adaptation strategies

Good (B+, B, B-)

Good analysis and problem-solving skills to demonstrate in-depth understanding of climate change and adaptation strategies

Fair (C+, C, C-)

Moderate analysis and problem-solving skills to demonstrate in-depth understanding of climate change and adaptation strategies

Marginal (D)

Basic analysis and problem-solving skills to demonstrate in-depth understanding of climate change and adaptation strategies

Failure (F)

Poor analysis and problem-solving skills to demonstrate in-depth understanding of climate change and adaptation strategies

Assessment Task

2. Group Project

Criterion

Capacity for self-directed learning to study the principles of climate change and climate adaptation

Excellent (A+, A, A-)

Demonstrate excellent self-directed learning capacity to study the principles of climate change and climate adaptation

Good (B+, B, B-)

Demonstrate good self-directed learning capacity to study the principles of climate change and climate adaptation

Fair (C+, C, C-)

Demonstrate moderate self-directed learning capacity to study the principles of climate change and climate adaptation

Marginal (D)

Demonstrate basic self-directed learning capacity to study the principles of climate change and climate adaptation

Failure (F)

Demonstrate poor self-directed learning capacity to study the principles of climate change and climate adaptation

Assessment Task

3. Midterm Quiz

Criterion

Ability to explain the key concepts as outlined in "Lecture and Tutorial".

Excellent (A+, A, A-)

Demonstrate excellent ability to explain the key concepts as outlined in "Lecture and Tutorial".

Good (B+, B, B-)

Demonstrate good ability to explain the key concepts as outlined in "Lecture and Tutorial".

Fair (C+, C, C-)

Demonstrate moderate ability to explain the key concepts as outlined in "Lecture and Tutorial".

Marginal (D)

Demonstrate basic ability to explain the key concepts as outlined in "Lecture and Tutorial".

Failure (F)

Demonstrate poor ability to explain the key concepts as outlined in "Lecture and Tutorial".

Assessment Task

4. Examination

Criterion

Ability to explain key concepts, such as physical and chemical principles to the process of soil erosion and conservation, sea level rise

Excellent (A+, A, A-)

Demonstrate excellent ability to explain key concepts, such as physical and chemical principles to the process of soil erosion and conservation, sea level rise

Good (B+, B, B-)

Demonstrate significant ability to explain key concepts, such as physical and chemical principles to the process of soil erosion and conservation, sea level rise

Fair (C+, C, C-)

Demonstrate moderate ability to explain key concepts, such as physical and chemical principles to the process of soil erosion and conservation, sea level rise

Marginal (D)

Demonstrate basic ability to explain key concepts, such as physical and chemical principles to the process of soil erosion and conservation, sea level rise

Failure (F)

Demonstrate poor ability to explain key concepts, such as physical and chemical principles to the process of soil erosion and conservation, sea level rise

Part III Other Information

Keyword Syllabus

- · Earth's climate system
 - Global air pollution, Global climate region, Extreme climate environment
- · Weathering and soils
 - Physical weathering, Chemical weathering, Biological weathering and decay, Erosion by water and wind, Effects of land use practise on Erosion, Soil erosion and conservation.
- · Groundwater and wetlands
 - Aquifer, Natural groundwater budget, Groundwater quality, Characteristics of wetlands
- · Oceans and coastlines
- The dynamics of oceans and coastlines, Wave active and coastal processes, Sea level rise, Erosion Prevention strategies, Erosion adjustment strategies
- · Climate Change and greenhouse gas emission trends
 - Ozone and the stratosphere, CFCs and Ozone depletion, Greenhouse gases and global change, The global carbon cycle, Reducing greenhouse gas emission
- · Mitigation and adaptations to climate change
 - Adaptations of species to global warming, The relationship between adaptation and disaster reduction, Strategies for reducing the impact of global warming, Urban heat island, Renewable energy, Sector-specific adaptive responses

Reading List

Compulsory Readings

	Title
1	Nil

Additional Readings

	Title
1	McConnell, Steer, Knight, Owens, The good earth. 2010, 2nd edition. McGrawHill. ISBN 978-0-07-336936-5