SDSC3102: QUALITY TECHNOLOGIES

Effective Term

Semester B 2023/24

Part I Course Overview

Course Title

Quality Technologies

Subject Code

SDSC - School of Data Science

Course Number

3102

Academic Unit

School of Data Science (DS)

College/School

School of Data Science (DS)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

MA2506 Probability and Statistics or MA2510 Probability and Statistics

Precursors

Nil

Equivalent Courses

ADSE3102 Quality Engineering

Exclusive Courses

Nil

Part II Course Details

Abstract

This course aims to provide students with a broad knowledge of quality systems as well as knowledge in concepts, methodology and tools of quality engineering. Upon completion of the course students will be equipped with the ability to

apply the knowhow of systems thinking to quality engineering and management problems in their future work. Students will be able to construct models for the analysis and improvement of quality in manufacturing and service environments.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Understand basic concepts, principles, and methods of quality management	10		X	
2	Understand the statistical foundation for change detection	20		X	
3	Be familiar with different types of control charts and their suitable circumstances	30		X	X
4	Apply concepts and methods learned in class to solve quality-related problems	40	X	X	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Formal lectures	1, 2, 3, 4	39 hours/semester including group projects
2	Tutorial	Exercises to provide students with the opportunities to i) familiarize and apply the tools learned during the lectures through practical problem solving and ii) appreciate the use of software to analyse data for quality control.	2, 3, 4	13 hours/semester (included in the lecture hours)

Assessment Tasks / Activities (ATs)

	ATs	CILO No.		Remarks (e.g. Parameter for GenAI use)
1	Homework assignments	1, 2, 3, 4	30	
2	Group project	1, 2, 3	30	

Continuous Assessment (%)

Examination (%)

40

Examination Duration (Hours)

2

Additional Information for ATs

Note: To pass the course, apart from obtaining a minimum of 40% in the overall mark, a student must also obtain a minimum mark of 30% in both continuous assessment and examination components.

Assessment Rubrics (AR)

Assessment Task

Course work

Criterion

The course work includes two assignments

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not reach marginal levels

Assessment Task

Group projects

Criterion

Based on presentation and submitted written work to evaluate understanding of subject matter, evidence of knowledge base, capacity to analyse and synthesize, and evidence of original and critical thinking.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Examination

Criterion

A test

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not reach marginal levels

Additional Information for AR

Course work and test will be numerically marked and grades awarded accordingly.

Part III Other Information

Keyword Syllabus

Quality engineering introduction Six Sigma and DMAIC methodology Statistical process monitoring Change detection Control charts for continuous data Attribute control charts CUSUM and EWMA control charts

Reading List

Compulsory Readings

	Title
1	Lecture notes

Additional Readings

	Title
1	D.C. Montgomery. Introduction to Statistical Quality Control, 7th edition, 2013
2	Quality Management. DL Goetsch and SB Davis, Pearson, 7th edition, 2013