SDSC3010: DIGITAL TRACE ANALYTICS

Effective Term

Semester B 2022/23

Part I Course Overview

Course Title

Digital Trace Analytics

Subject Code

SDSC - School of Data Science

Course Number

3010

Academic Unit

School of Data Science (DS)

College/School

School of Data Science (DS)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

SDSC1001 Introduction to Data Science* and SDSC2001 Python for Data Science

Precursors

Nil

Equivalent Courses

Nil

Exclusive Courses

Nil

^{*} Pre-requisite SDSC1001 will be exempted for students who are enrolled in Minor in Data Science

Part II Course Details

Abstract

This course provides students with an extensive exposure to the elements of opinion/behavioural data analytics. Topics include self-reported data, behavioural data, social science sampling, questionnaire design, offline surveys, online surveys, digital trace measurement, multi-source data analytics, and privacy protection.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Explain clearly fundamental principles and methods of digital trace analytics	20	X		
2	Classify various types and properties of opinion and behavioural data	20	X	X	
3	Evaluate prevailing practices in digital trace analytics and seek ways to improve the existing practices	30	X	X	x
4	Apply appropriate methods to solve given problems in digital trace analytics	30	X	X	X

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Learning through teaching is primarily based on lectures.	1, 2, 3, 4	39 hours in total
2	Case studies	Describe and critique classic cases of digital trace analytics.	2, 3, 4	in or after classes
3	Take-home assignments	Learning through inclass or take-home assignments is primarily based on interactive problem solving and hands-on exercises allowing instant feedback.	2, 3, 4	in or after class

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Test	1, 2, 3, 4	20	Questions are designed for data collection methods of digital trace analytics to see how well the students have learned the fundamental concepts and methods, and applications in real world context. (20-40%)
2	Hands-in assignments	3, 4	20	These are skills based assessment to enable students to demonstrate the basic concepts, methods and algorithms of digital trace analytics, and applications of in real world context.

Continuous Assessment (%)

40

Examination (%)

60

Examination Duration (Hours)

2

Assessment Rubrics (AR)

Assessment Task

Test

Criterion

Ability to understand and apply key concepts, methods of digital trace analytics.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Hands-in assignments

Criterion

Ability to learn the basic concepts, apply methods and algorithms of digital trace analytics, and develop real world applications.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Examination

Criterion

Ability to solve learning tasks using digital trace analytics.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Self-reported data, behavioural data, social science sampling, questionnaire design, offline surveys, online surveys, digital trace measurement, multi-source data analytics, privacy protection

Reading List

Compulsory Readings

		Title
1	_	Analyzing political communication with digital trace data, by Andreas Jungherr, Springer, 2015

Additional Readings

	itle	
1	Til	