PHY4274: RADIATION BIOPHYSICS

Effective Term Semester A 2022/23

Part I Course Overview

Course Title Radiation Biophysics

Subject Code PHY - Physics Course Number 4274

Academic Unit Physics (PHY)

College/School College of Science (SI)

Course Duration One Semester

Credit Units

3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites Nil

Precursors Nil

Equivalent Courses AP4274 Radiation Biophysics

Exclusive Courses Nil

Part II Course Details

Abstract

The present course aims to teach the students about the correlations of radiation physics and behavior of the human body. The course materials mainly cover the interactions of ionization radiation with cells and tissues in the human body, and clinical applications of ionizing radiation.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if DEC-A1 app.)	DEC-A2	DEC-A3
1	Describe and explain the interactions between ionizing radiation and the human body.	X		
2	Describe and model the survival of cells irradiated by ionizing radiation.	X		
3	Relate basic radiation biophysical principles to radiotherapy.		X	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Including teaching of lecture materials, tutorial and problem solving sessions	1, 2, 3	2 hours/week
2	Tutorials	Questions and answers sessions, during which students will be asked questions and can ask questions, and there will be time for discussion. Numerical problems will also be given to the students to solve. If needed, the lecturer and/or TA will give information or hints to help the students solve the problems.	1, 2, 3	1 hour/week

Teaching and Learning Activities (TLAs)

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Tests	1, 2, 3	21	
2	Assignments	1, 2, 3	9	

Continuous Assessment (%)

30

Examination (%)

70

Examination Duration (Hours)

2

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained

Assessment Rubrics (AR)

Assessment Task

1. Tests

Criterion

The student can thoroughly describe and explain the interactions between ionizing radiation and the human body, describe and model the survival of cells irradiated by ionizing radiation, and relate basic radiation biophysical principles to radiotherapy.

Excellent (A+, A, A-) High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not reaching marginal level

Assessment Task

2. Assignments

Criterion

The student can thoroughly describe and explain the interactions between ionizing radiation and the human body, describe and model the survival of cells irradiated by ionizing radiation, and relate basic radiation biophysical principles to radiotherapy.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not reaching marginal level

Assessment Task

3. Examination

Criterion

The student can thoroughly describe and explain the interactions between ionizing radiation and the human body, describe and model the survival of cells irradiated by ionizing radiation, and relate basic radiation biophysical principles to radiotherapy.

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not reaching marginal level

Part III Other Information

Keyword Syllabus

- Basic radiation biophysics
 Radiation doses, linear energy transfer, relative biologic effectiveness, oxygen enhancement ratio.
- Effects of ionizing radiation on the human body Direct and indirect actions of ionizing radiations, DNA strand breaks and chromosome aberrations caused by ionizing radiations, acute and late effects of ionizing radiation
- · Cell survival curve theory Shape of survival curves, multi-target single-hit model, linear-quadratic model, other models.
- · Basic radiotherapy physics Fractionation in radiotherapy, fraction size and overall treatment time, effective doses in radiotherapy, modifiers.

Reading List

Compulsory Readings

	Title
1	Edward L Alpen "Radiation Biophysics", Prentice-Hall Inc, NJ, USA, 1990.

Additional Readings

	Title
1	Nil