PHY1400: INTRODUCTORY PHYSICS FOR BIOLOGISTS

Effective Term Semester A 2022/23

Part I Course Overview

Course Title Introductory Physics for Biologists

Subject Code PHY - Physics Course Number 1400

Academic Unit Physics (PHY)

College/School College of Science (SI)

Course Duration One Semester

Credit Units

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites Nil

Precursors Nil

Equivalent Courses AP1400 Introductory Physics for Biologists

Exclusive Courses GE1360 Introductory Physics

Part II Course Details

Abstract

This course covers a wide scope of topics in physics relevant to medical and veterinary programs including biomechanics, heat, gases, wave and optics in both physiological and pathological contexts. Students will investigate the fundamentals of these topics and become able to apply them to achieve understanding of aspects of musculoskeletal functioning, thermoregulation, sensory perception and imaging technologies. This course equips students with a broad knowledge in several important topics in biophysics and the depth and coverage are sufficient for the students to pursue later studies in physiology, imaging technologies, pathology, and orthopaedic surgery.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Recognize and use appropriately important technical terms and definitions relevant to the major topics in the course.		х		
2	Use appropriate mathematical notation to formulate and apply the physical laws covered in the course in concise form.		x		
3	Apply physics laws of mechanics, heat, gases, waves and optics in medical and veterinary situations.		Х	X	
4	Solve real and hypothetical problems by identifying the underlying physics and analyzing the problem.		Х	x	x

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Explain key concepts and theory of topics of the course	1, 2, 3, 4	2 hrs/wk
2	Tutorial	Explain how some problems are solved and the techniques used; explain some concepts	1, 2, 3, 4	1 hrs/wk
3	Assignment	Practice solving problems	2, 3, 4	

Teaching and Learning Activities (TLAs)

4	Laboratory	Set up the experiment,	3, 4	3 hours every third week
		carry out some		
		measurement and analyse		
		the results with the		
		relevant theory; students		
		learn experimental skills,		
		analysis methods and		
		data presentation skills		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.		Remarks (e.g. Parameter for GenAI use)
1	Assignments	1, 2, 3, 4	20	
2	Laboratory reports	1, 3, 4	10	

Continuous Assessment (%)

30

Examination (%)

70

Examination Duration (Hours)

2

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained

Assessment Rubrics (AR)

Assessment Task

1. Assignments

Criterion

1. Capacity for using physics knowledge and theory to solve biomedical problems

2. Demonstrate correct understanding of key concepts.

Excellent (A+, A, A-)

Will exhibit a high level of competence in understanding, explaining, and integrating the knowledge in written format

Good (B+, B, B-)

Will exhibit a good level of competence in understanding, explaining, and integrating the knowledge in written format

Fair (C+, C, C-)

Will exhibit a basic level of competence in understanding, explaining, and integrating the knowledge in written format

Marginal (D)

Will exhibit some deficiencies in understanding, explaining, and integrating the knowledge in written format

Failure (F)

Will exhibit lack of competence in understanding, explaining, and integrating the knowledge in written format

Assessment Task

2. Laboratory reports

Criterion

- 1. Demonstrate capacity of setting up the required experiments
- 2. Demonstrate capacity of carrying out proper measurement
- 3. Demonstrate correct understanding of the experimental results

Excellent (A+, A, A-)

Will exhibit a high level of understanding about experimental methods and the interpretation of results

Good (B+, B, B-)

Will exhibit a good level of understanding about experimental methods and the interpretation of results

Fair (C+, C, C-)

Will exhibit a basic level of understanding about experimental methods and the interpretation of results

Marginal (D)

Will exhibit some deficiencies in understanding about experimental methods and the interpretation of results

Failure (F)

Will exhibit lack of understanding about experimental methods and the interpretation of results

Assessment Task

3. Examination

Criterion

- 1. Capacity for using physics knowledge and theory to solve biomedical problems
- 2. Demonstrate correct understanding of key concepts and physics theory.

Excellent (A+, A, A-)

Will exhibit a high level of competence in understanding, explaining, and integrating the knowledge in written format

Good (B+, B, B-)

Will exhibit a good level of competence in understanding, explaining, and integrating the knowledge in written format

Fair (C+, C, C-)

Will exhibit a basic level of competence in understanding, explaining, and integrating the knowledge in written format

Marginal (D)

Will exhibit some deficiencies in understanding, explaining, and integrating the knowledge in written format

Failure (F)

Will exhibit lack of competence in understanding, explaining, and integrating the knowledge in written format

Part III Other Information

Keyword Syllabus

- · Mechanics: Vectors and scalars. Resolving forces. Newton's laws of motion. Conservation of energy. Moments and torques. Gravitation.
- · Heat and gases: Temperature and heat. Heat capacity. Latent heat. Thermal expansion. Gas laws. Kinetic theory of gases.

- · Waves: Traveling waves. Standing waves. Huygens' construction. Interference, refraction and diffraction. Doppler effect.
- · Optics: Reflection. Refraction. Lenses. Impact of incident light intensity and sensor size. Leuckart's law.

Reading List

Compulsory Readings

	Title
1	Nil

Additional Readings

	Title		
1	Young, H. and Freedman, R. (2012) "University Physics with Modern Physics" 13th Edition. Pearson, San Francisco.		
2	Knudson, D. (2007). Fundamentals of Biomechanics. Springer		
3	College Physics in Openstax website: https://openstax.org/subjects/science		
4	University Physics in Openstax website: https://openstax.org/subjects/science		