MSE4178: NANOSTRUCTURES AND NANOTECHNOLOGY

Effective Term Semester A 2023/24

Part I Course Overview

Course Title Nanostructures and Nanotechnology

Subject Code MSE - Materials Science and Engineering Course Number 4178

Academic Unit Materials Science and Engineering (MSE)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites Nil

Precursors Nil

Equivalent Courses AP4178 Nanostructures and Nanotechnology

Exclusive Courses Nil

Part II Course Details

Abstract

This course will enable students to develop a fundamental understanding of the current concepts in the field of nanoscience and nanotechnology, and provide them with state-of-the-art knowledge on the fabrication, properties, and applications of selected advanced functional materials.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Demonstrate the capacity for self-directed learning on a broad range of topics related to nanoscience and nanotechnology.		Х		
2	Recognize the potential and be able to select the proper fabrication and characterization techniques for selected classes of nanomaterials, functional materials and devices.			х	
3	Apply the above knowledge to explicit functional nanomaterials in selected applications, such as optoelectronics, photovoltaics, energy and biotechnology fields.			Х	
4	Understand and be able to analyse most recent developments in nanoscience and nanotechnology through special topics which may vary from year to year.				x

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Understand key concepts and engage in inquiry	1, 2, 3, 4	3 hrs/wk
2	Tutorial activity	Demonstrate the capability of analysis and critical thinking	1, 2, 3, 4	1 hr/wk
3	Lab work	Produce creative solutions to real-life problems	2, 3	3 hrs/wk

Teaching and Learning Activities (TLAs)

Assessment Tasks / Activities (ATs)

3 MSE4178: Nanostructures and Nanotechnology

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Active class participation	2, 3, 4	5	
2	Discussion at tutorial	1, 2	5	
3	Quiz and homework essay	1, 2, 3, 4	10	
4	Two Lab reports	2, 3	10	

Continuous Assessment (%)

30

Examination (%)

70

Examination Duration (Hours)

2

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained

Assessment Rubrics (AR)

Assessment Task

1. Discussion at tutorial

Criterion

CAPACITY for SELF-DIRECTED LEARNING to understand the principles

Excellent (A+, A, A-) High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

2. Quiz

Criterion ABILITY to EXPLAIN methodologies

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task 3. Homework essay

Criterion ABILITY to GENERATE new concepts

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

4. Lab report

Criterion ACCOMPLISHMENT to PRODUCE creative solutions

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

5. Final examination

Criterion ALL including 1 to 3

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

- · Introduction to nanomaterials & nanotechnology: nano-size effects, quantum effects, size effects, etc.
- · Synthesis/Preparation of nanomaterials

synthesis mechanism, different synthesis methods (such as chemical vapour deposition, oxide-assisted growth method, single-source molecular precursor method, hydrogen-assisted thermal evaporation method, laser-assisted catalytic VLS growth method), carbon nanotubes, silicon nanowires, silicon nanostructures, III-V compound semiconductors, oxides, etc.

 Characterization of nanomaterials with emphasis on one dimensional nanomaterials, different characterization techniques (such as Secondary electron microscopy (SEM), Transmission electron microscopy (TEM), Energy dispersive x-ray spectroscopy (EDX), Cathodoluminescence (CL), Electron Energy Loss Spectroscopy (EELS), Raman Spectroscopy, Photoluminescence (PL), Optical Spectroscopy, X-ray Diffraction (XRD), Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM), Current-Voltage Measurement (I-V), X-ray and Ultraviolet Photoemission Spectroscopy (XPS & UPS), High-Resolution Electron Energy Loss Spectroscopy (HREELS)).

Properties and applications of one dimensional nanomaterials
Scaling Principle, optical (LED, Laser, photon limiter, waveguides), chemical & biomedical sensing, environmental, electric and electronic (I-V, FET, Coulomb blockades, ballastic transport), field-induced electron emission, magnetic, magneto-resistance, GMR, thermal conductivity, mechanical, piezoelectrical, & thermoelectric properties.

Reading List

Compulsory Readings

	Fitle	
1	Nil	

Additional Readings

	Title	
1	Guozhong Cao, (2004).	"Nanostructures & Nanomaterials: synthesis, properties and applications", Imperial College Press

6 MSE4178: Nanostructures and Nanotechnology

2	(Ed.) Zhong Lin Wang, "Nanowires and nanobelts : materials, properties and devices", Kluwer Academic Publishers (2003).
3	Geoffrey A Ozin and André C Arsenault, "Nanochemistry: A Chemical Approach to Nanomaterials", Royal Society of Chemistry (2005).
4	Mildred S Dresselhaus, Gene Dresselhaus & Phaedon Avouris (eds.), "Carbon nanotubes: synthesis, structure, properties, and applications, Springer (2001).