MNE4108: NUCLEAR REACTOR ENGINEERING

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title

Nuclear Reactor Engineering

Subject Code

MNE - Mechanical Engineering

Course Number

4108

Academic Unit

Mechanical Engineering (MNE)

College/School

College of Engineering (EG)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

MBE3107/MNE3107 Principles of Nuclear Engineering

Precursors

Nil

Equivalent Courses

MBE4108 Nuclear Reactor Engineering

Exclusive Courses

Nil

Part II Course Details

Abstract

This course aims to introduce the principles of thermal-hydraulic analysis of nuclear power systems, with special emphasis towards the analysis of nuclear power reactors.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if DEC-A1 app.)	DEC-A2	DEC-A3
1	Explain the principles of thermal-hydraulic analysis of nuclear power systems and teleoperated robotic inspection systems.			
2	Develop the conservation equations of mass, motion and energy in a generalized form.		X	
3	Apply the appropriate equations to specific phenomena arising in the design of nuclear systems.		X	x
4	Discuss the reactor transient response.		X	
5	Describe dynamic characteristics of a reactor and the effect of Xenon.		Х	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1		Delivery of the course will be achieved through a series of formal lectures supported by practical case studies.	1, 2, 3, 4, 5	3hrs/week

2	Mini-project	A typical thermal	1, 2, 3, 4, 5	
_	wiiii-project	hydraulic problem for	1, 2, 3, 4, 3	
		nuclear application will		
		be given to students		
		to solve. The students		
		are expected to work in		
		teams to tackle the given		
		problems. This learning		
		activity will be mainly		
		student-led but with some		
		structural guidance from		
		the teacher. At the end		
		of the learning activity, a		
		presentation session will		
		be organised for all the		
		students to present their		
		solutions for the given		
		problem.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.		Remarks (e.g. Parameter for GenAI use)
1	Mid-term Test	1, 2, 3, 4	20	
2	Mini-project	1, 2, 3, 4, 5		Report submission and presentation to be made

Continuous Assessment (%)

40

Examination (%)

60

Examination Duration (Hours)

2

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

Assessment Rubrics (AR)

Assessment Task

Mid-term Test

Criterion

Understand and be able to conduct the thermal analysis of nuclear fuel.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

MNE4108: Nuclear Reactor Engineering Marginal (D) Basic Failure (F) Not even reaching marginal levels **Assessment Task** Mini-project Criterion Ability to apply the learned theories to conduct the research and self-learning for a nuclear reactor thermal-hydraulics related topic. Excellent (A+, A, A-) High Good (B+, B, B-) Significant Fair (C+, C, C-) Moderate Marginal (D) Basic Failure (F) Not even reaching marginal levels Assessment Task Examination Criterion Understand the basic principles of thermal-hydraulic analysis of nuclear power systems. Obtain the deep insight on the fuel thermal analysis, single and two phase flow and heat transfer inside the nuclear reactors. Excellent (A+, A, A-) High Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Failure (F)

Not even reaching marginal levels

Basic

Additional Information for AR

Note: For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

Part III Other Information

Keyword Syllabus

- · Fluid dynamics and heat transfer
- · Thermal and hydraulic analysis of nuclear reactors
- · Fluid systems analysis, two-phase flow and boiling
- · Energy conversion methods
- · Heat generation in nuclear reactors
- · Thermal hydraulic design of reactor cores and plant components
- · Reactor Kinetics
- · Dynamic Characteristics of a Reactor
- · Effect of Xenon
- · Non-Destructive Testing (NDT) techniques such as Ultrasonic testing, Eddy current inspection, Infrared thermography, Shearography, impact acoustics technique, etc
- · Basic robotics for tele-operated inspection and maintenance

Reading List

Compulsory Readings

	Title
1	Todreas, N. E., and Kazimi, M. S. Nuclear Systems I: Thermal Hydraulic Fundamentals. Taylor & Francis Group, LLC, Second Edition, 2011.

Additional Readings

	Title
1	Rust, J. H., Nuclear Power Plant Engineering. Haralson Publishing Company, ISBN-10: 0934534004.
2	Lamarsh, J. R. and Baratta, A. J. Introduction to Nuclear Engineering. Prentice Hall, ISBN: 0-201-82498-1.
3	Versteeg, H. K., and Malalasekera W. An Introduction to Computational Fluid Dynamics. The Finite Volume Method. Pearson-Prentice Hall, ISBN: 978-0-13-127498-3.