MNE4005: FINITE ELEMENT ANALYSIS

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title

Finite Element Analysis

Subject Code

MNE - Mechanical Engineering

Course Number

4005

Academic Unit

Mechanical Engineering (MNE)

College/School

College of Engineering (EG)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

MBE2003/MNE2003 Mechanics or MBE2109/BME2109/MNE2109 Engineering Mechanics AND MBE2016/MNE2016 Engineering Graphics or MBE3007/MNE3007 CAD/CAM or equivalent

Precursors

Nil

Equivalent Courses

MBE4005 Finite Element Analysis

Exclusive Courses

Nil

Additional Information

#Prerequisites which are not part of the Major Requirement are waived for students admitted with Advanced Standing.

Part II Course Details

Abstract

The aims of this course are to develop:

- · an understanding of basic principles, techniques and issues underlying modelling and computer-aided analysis of parts, products and other engineering systems; and
- a practical awareness of the above through the application of appropriate computer-aided engineering software.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if DEC-A1 app.)	DEC-A2	DEC-A3
1	Discuss the basic theory and methods on spline-based modelling.		X	
2	Explain methods and algorithms on mesh generation from a given surface or solid model.		X	
3	Explain properties of geometric models and methods for their evaluation.			
4	Elaborate the basic principles of finite-element analysis and their applications in stress/strain analysis and thermal stress analysis.		X	
5	Use finite-element methods and an appropriate computer aided engineering software to analyse parts, products and other engineering systems.		X	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

TLAs		Brief Description	CILO No.	o. Hours/week (if applicable)	
I	Lectures	Explain key concepts, theories and methods on modelling, mesh generation, property evaluation and finite element analysis.	1, 2, 3, 4	3 hrs/week	
2	Laboratory Work	Use finite-element methods and appropriate computer aided engineering software to analyze parts or systems.	5	3 hrs/week for 2 weeks	

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Test and Assignments	1, 2, 3	20	
2	Laboratory Exercises	4, 5	20	2 sets of exercises; developed reports should be submitted by students

Continuous Assessment (%)

40

Examination (%)

60

Examination Duration (Hours)

2.5

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

Assessment Rubrics (AR)

Assessment Task

Test and Assignments

Criterion

Ability to explain key concepts, theories and methods on topics covered in relevant lectures.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Laboratory Exercises

Criterion

Ability to use an appropriate computer aided engineering software to analyse parts or structures.

Excellent (A+, A, A-)

High

4 MNE4005: Finite Element Analysis

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Examination

Criterion

Ability to explain key concepts, theories and methods on modelling, mesh generation, property evaluation and finite element analysis.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Additional Information for AR

Note: For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

Part III Other Information

Keyword Syllabus

- · Modelling and engineering shape representation: Polynomials and polynomial functions. Spline-based modelling. NURBS for representing commonly used engineering shapes and geometries.
- · Mesh generation: Delaunay triangulation. Parametric approaches and direct approaches for mesh generation. Advancing-front method for mesh generation. Surface mesh generation. Volume mesh generation.
- · Evaluation of global geometric and mass properties: Curve length. Cross-sectional area. Surface area. Volume. Centroid. Mass. Moment of inertia.
- · Finite-element analysis of mechanical structures: Types of elements, such as trusses, beams, and 2D and 3D solids. Model formulation. Boundary and loading conditions. Application in stress/strain analysis.

· Finite-element analysis in heat transfer and thermal stress: Fourier law of heat conduction and governing equation for steady-state conduction. Boundary conditions: specified temperature, specified heat flux and convection. Application in thermal stress calculation.

Reading List

Compulsory Readings

	Title Title	
1	Vil	

Additional Readings

	Title
1	David F. Rogers, "An Introduction to NURBS: with Historical Perspectives", Academic Press, San Francisco, 2001.
2	Ibrahim Zeid, "CAD/CAM Theory and Practice", McGraw-Hill, New Delhi, 1991.
3	Joe F. Thompson, Bharat K. Soni and Nigel P. Weatherill, "Handbook of Grid Generation", CRC Press, New York, 1999.
4	Charles E. Knight, "The Finite Element Method in Mechanical Design", PWS-KENT Publishing Co., 1993.
5	Kenneth H. Huebner, Donald L. Dewhirst, Douglas E. Smith and Ted G. Byrom, The Finite Element Method for Engineers, John Wiley & Sons, Inc., New York, 2001.
6	Thomas J. R. Hughes, "The Finite Element Method: Linear Static and Dynamic Finite Element Analysis", Dolver Publications Inc, New York, 2012.
7	J. Austin Cottrell, Thomas J. R. Hughes, Yuri Bazilevs, "Isogeometric Analysis: Toward Integration of CAD and FEA", John Wiley & Sons, 2009.