MNE3118: MECHANICS OF MATERIALS

Effective Term Semester A 2022/23

Part I Course Overview

Course Title Mechanics of Materials

Subject Code MNE - Mechanical Engineering Course Number 3118

Academic Unit Mechanical Engineering (MNE)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites MBE2109/BME2109/MNE2109 Engineering Mechanics

Precursors

Nil

Equivalent Courses MBE3118 Mechanics of Materials

Exclusive Courses Nil

Part II Course Details

Abstract

This course provides basic knowledge of mechanics of solid materials including analysis of stress and strain, axial forces, torsion of a circular shaft and beam bending, etc. It's the fundamental knowledge for mechanical design of versatile engineering products.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Describe the fundamental concepts of mechanics of materials and their impacts on the behavior of solid materials subject to forces or displacements.			Х	
2	Identify the materials related mechanical engineering problems, explain the problems with critical thinking generated from mechanics concepts, and calculate the problems with mechanics theory.			X	
3	Apply the mechanics knowledge to explain structural and functional behavior of solid materials such as metals, ceramics, polymers and composites.			X	X
4	Interpret the experimental results obtained in the laboratory sessions to evaluate the mechanical behavior of solid materials.		Х	x	Х

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	This activity includes typical lectures on different topics of mechanics of materials and applications accompanied by in-class student activities.	1, 2, 3	3 hrs/week for 13 weeks

Teaching and Learning Activities (TLAs)

2	Laboratory	Students are asked to	3, 4	3 hrs/week for 4 weeks
		work on laboratory		
		exercises on different		
		topics of experimental		
		techniques and		
		applications. They are		
		requested to conduct		
		laboratory experiments		
		on the measurement		
		of materials with		
		different instruments		
		and techniques, and		
		then summarize, discuss		
		and record the results		
		obtained from the		
		experiments.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Tests/Assignments	1, 2, 3	20	
2	Laboratory Reports	3, 4	20	3-4 reports to be submitted

Continuous Assessment (%)

40

Examination (%)

60

Examination Duration (Hours)

3

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

Assessment Rubrics (AR)

Assessment Task

Tests/Assignments

Criterion

Describe the fundamental concepts of mechanics and apply them to explain mechanical behavior of solid materials; Analyse and calculate the problems with mechanics theory.

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

Laboratory Reports

Criterion

Attendance of the lab/demo session; ABILITY to EXPLAIN the methodology and procedure and ANALYSE the lab data.

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Examination

Criterion

Describe the fundamental concepts of mechanics and apply them to explain mechanical behavior of solid materials; Analyse and calculate the problems with mechanics theory.

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Additional Information for AR

Note: For a student to pass the course, at least 30% of the maximum mark for both coursework and examination should be obtained.

Part III Other Information

Keyword Syllabus

Tension, Compression and Shear, Axially Loaded Members, Torsion, Shear Forces and Bending Moments, Stresses in Beams, Analysis of Stress and Strain, Plane Stress, Plan Strain, Deflections of Beams, Membranes and Columns, etc.

In addition to the examination and in-class test, students are required to learn through collaborative lab sessions in order to improve their understanding on strategic thinking, problem solving, team working processes, the relationships and interactions between the fields of knowledge that they have learnt in this and other courses.

Reading List

Compulsory Readings

	Title
1	"Mechanics of materials", Barry J. Goodno and James M. Gere, 9th ed., SI Version, Cengage Learning, 2018

Additional Readings

	Title
1	R. C. Hibbeler, Mechanics of Materials, 9 ed., Prentice Hall, 2013
2	Crandall, S. H., N. C. Dahl, and T. J. Lardner. An Introduction to the Mechanics of Solids. 3rd ed. Tata McGraw Hill Education Private Limited, 2012
3	Dowling, N. E. Mechanical Behavior of Materials. 4th ed. Prentice Hall, 2012