MA4532: APPLIED FUNCTIONAL ANALYSIS

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title

Applied Functional Analysis

Subject Code

MA - Mathematics

Course Number

4532

Academic Unit

Mathematics (MA)

College/School

College of Science (SI)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

 $\rm MA2503$ Linear Algebra / MA1503 Linear Algebra with Applications; and MA2508 Multi-variable Calculus

Precursors

Nil

Equivalent Courses

Nil

Exclusive Courses

Nil

Part II Course Details

Abstract

This course introduces basic notions of functional analysis with important applications. One such notion is the projection theorem of Hilbert spaces, which is the origin of classic approximation theory. Another one is the Fredholm alternative, which produces an elegant theory of linear algebraic systems and

two-point boundary value problems. It also helps students apply functional analysis methods to solve diverse mathematical problems.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	explain clearly properties of normed linear spaces and bounded linear operators on such spaces.	15	x		
2	state and prove various structure theorems on Hilbert and Banach spaces.	15		X	
3	understand applications of Hilbert space structures (including the projection theorem) to approximation by functions and trigonometric series.	25	x	X	
4	state the Fredholm alternative and apply it to algebraic equations, integral equations, operator equations in Hilbert spaces and/or two-point boundary value problems.	25		x	x
5	the combination of CILOs 1-4	20	X	X	X

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Learning through teaching is primarily based on lectures.	1, 2, 3, 4, 5	39 hours in total

2	Take-home assignments	Learning through take-	1, 2, 3, 4	after-class
		home assignments helps		
		students understand basic		
		theory of Hilbert spaces,		
		the projection theorem,		
		the Fredholm alternative		
		and recognize their		
		diverse mathematical		
		applications.		

Assessment Tasks / Activities (ATs)

ATs		CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)	
1	Test	1, 2, 3	20	Questions are designed for the first part of the course to see how well the students have learned basic properties of Hilbert spaces and recognized the applications of the projection theorem in function-theoretic approximation.	
2	Hand-in assignments	1, 2, 3, 4	20	These are skills based assessment to help students understand structural properties of Hilbert spaces, the Fredholm alternative and the associated results with applications.	
3	Formative take-home assignments	1, 2, 3, 4	0	The assignments provide students chances to demonstrate their achievements in applying techniques of functional analysis learned from this course.	

Continuous Assessment (%)

40

Examination (%)

60

Examination Duration (Hours)

2

Additional Information for ATs

40% Coursework

60% Examination (Duration: 2 hours, at the end of the semester)

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task

1. Test

Criterion

Ability in problem solving

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

2. Hand-in assignments

Criterion

Understanding of concepts and applications

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

3. Formative take-home assignments

Criterion

Study attitude

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

4. Examination

Criterion

Comprehensive ability in independent problem solving

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Theory of Banach and Hilbert spaces and their applications. Representation of linear functional and orthogonal projections. Dual spaces and their properties.

Reading List

Compulsory Readings

	itle	
1	il	

Additional Readings

	Title
1	Nil