MA4529: MATHEMATICAL FINANCE

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title
Mathematical Finance

Subject Code

MA - Mathematics
Course Number
4529
Academic Unit
Mathematics (MA)
College/School
College of Science (SI)
Course Duration
One Semester
Credit Units
3
Level
B1, B2, B3, B4 - Bachelor's Degree
Medium of Instruction
English
Medium of Assessment
English
Prerequisites
MA3521 Introductory Mathematical Finance
Precursors
Nil
Equivalent Courses
Nil
Exclusive Courses
Nil

Part II Course Details

Abstract

This course provides fundamental concepts of probability theory, stochastic processes and option pricing. It helps students understand the mathematical concepts of stochastic processes and apply the knowledge to a range of problems in finance.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if DEC-A1 app.)		DEC-A2	DEC-A3
1	explain clearly concepts from advanced probability and stochastic processes.	15	X		
2	formulate financial phenomena in terms of Brownian motions and stochastic processes.	15	X	X	
3	describe basic principles of quantitative finance, including no arbitrage and risk hedging.	20		X	X
4	apply the Black-Scholes formula in pricing options.	15		X	
5	apply mathematical methods in deriving analytic relations among financial variables.	15		X	X
6	the combination of CILOs 1-5	20	X	X	X

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability
Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments
Demonstrate accomplishment of discovery/innovation/creativity through producing/constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

TLAs		Brief Description	CILO No. applicable)	
1	Lectures	Learning through teaching is primarily based on lectures.	$1,2,3,4,5,6$	39 hours in total
2	Take-home assignments	Learning through take- home assignments helps students understand advanced probability theory, stochastic processes, principles of quantitative finance and simple applications in modeling financial markets.	$1,2,3,4,5$	after-class

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (\%)	Remarks (e.g. Parameter for GenAI use)
1	Test	1, 2, 3	20	Questions are designed for the first part of the course to see how well the students have learned concepts of advanced probability, stochastic processes and mathematical principles of financial economics.
2	Hand-in assignments	1, 2, 3, 4, 5	10	These are skills based assessment to help students understand advanced concepts of probability, stochastic processes and some applications in quantitative finance and option pricing.
3	Formative take-home assignments	1, 2, 3, 4, 5	0	The assignments provide students chances to demonstrate their achievements in applying concepts of mathematical finance learned from this course.

Continuous Assessment (\%)

30

Examination (\%)

70

Examination Duration (Hours)

3

Additional Information for ATs

30\% Coursework

70\% Examination (Duration: 3 hours, at the end of the semester)
For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task

1. Test

Criterion

Ability in problem solving
Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic
Failure (F)
Not even reaching marginal levels

Assessment Task

2. Hand-in assignments

Criterion
Understanding of concepts and applications
Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic
Failure (F)
Not even reaching marginal levels

Assessment Task

3. Formative take-home assignments

Criterion

Study attitude
Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

4. Examination

Criterion

Comprehensive ability in independent problem solving
Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic
Failure (F)
Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Contracts, Vanilla options, American type options, exotic options, put-call parity, no arbitrage, game theory, replicating portfolio, risk-free portfolio, binomial trees, martingale methods, Black-Scholes formulas, Itô' s lemma, stochastic derivatives, hedging portfolio.

Reading List

Compulsory Readings

Title	
1	John C. Hull, Options, Futures, and other Derivatives, Prentice Hall.
2	Paul Wilmott, Sam Howison, and Jeff Dewynne, The Mathematics of Financial Derivatives, Cambridge University Press.

Additional Readings

Title	
1	Rüdiger U. Seydel, Tools for Computational Finance, Springer.

