MA4524: ELEMENTARY NUMBER THEORY AND APPLICATIONS

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title
Elementary Number Theory and Applications

Subject Code

MA - Mathematics
Course Number
4524
Academic Unit
Mathematics (MA)
College/School
College of Science (SI)
Course Duration
One Semester
Credit Units
3
Level
B1, B2, B3, B4 - Bachelor's Degree
Medium of Instruction
English
Medium of Assessment
English

Prerequisites

MA2504 Discrete Mathematics, or MA2509 Discrete Mathematics

Precursors
Nil

Equivalent Courses
Nil

Exclusive Courses

Part II Course Details

Abstract

This course introduces basic concepts and knowledge in number theory, together with a wide variety of interesting applications of discrete mathematics. It also trains students to solve problems from algorithm design and analysis, coding theory, Turing machines, etc., and to apply techniques of number theory in cryptography.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if DEC-A1 app.)		DEC-A2	DEC-A3
1	explain at high levels concepts from elementary number theory, including divisibility and primality.	10	x		
2	state fundamental results in number theory and prove rigorously mathematical statements concerning prime numbers and modular arithmetic.	15	x	x	
3	evaluate greatest common divisors by prime factorizations or Euclid' s algorithm.	15		x	
4	solve linear diophantine equations and linear congruences.	15			x
5	understand properties of common arithmetical functions, including the Euler phi function.	10	x		
6	apply methods and techniques of number theory to a range of applications in cryptography.	15			x
7	the combination of CILOs 1-6	20	x	x	x

A1: Attitude
Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments
Demonstrate accomplishment of discovery/innovation/creativity through producing/constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

TLAs		Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Learning through teaching is primarily based on lectures.	$1,2,3,4,5,6,7$	39 hours in total

2	Take-home assignments	Learning through take- home assignments helps students understand basic results and methods of elementary number theory, as well as the applications of which in algorithm analysis and/or cryptography.	after-class

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (\%)	Remarks (e.g. Parameter for GenAI use)
1	Test	1, 2, 3, 4	15	Questions are designed for the first part of the course to see how well students have learned basic concepts concerning divisibility of integers and prime numbers, as well as methods of solving linear diophantine equations and linear congruences.
2	Hand-in assignments	1, 2, 3, 4, 5, 6	15	These are skills based assessment which enables students to apply basic concepts and techniques of number theory in proving mathematical statements, solving congruences and describing applications in cryptography.
3	Formative take-home assignments	1, 2, 3, 4, 5, 6	0	The assignments provide students chances to demonstrate their achievements on elementary number theory learned in this course.

Continuous Assessment (\%)

30
Examination (\%)
70

Examination Duration (Hours)

3

Additional Information for ATs

30\% Coursework
70\% Examination (Duration: 3 hours, at the end of the semester)
For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task

1. Test

Criterion

Ability in problem solving
Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic
Failure (F)
Not even reaching marginal levels

Assessment Task

2. Hand-in assignments

Criterion

Understanding of concepts and applications
Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic
Failure (F)
Not even reaching marginal levels

Assessment Task

3. Formative take-home assignments

Criterion

Study attitude
Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic
Failure (F)
Not even reaching marginal levels

Assessment Task

4. Examination

Criterion

Comprehensive ability in independent problem solving
Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic
Failure (F)
Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

The integers, divisibility, primality. GCDs, the Euclidean Algorithm (Complexity). Fundamental Theorem of Arithmetic. Linear Diophantine Equations. Congruences and Modular Arithmetic. Linear Congruences. Chinese Remainder Theorem. Systems of Linear Congruences. Euler's Theorem. Euler's Function. Cryptography. Character Ciphers. Block Ciphers. Exponentiation Ciphers. Public-key Cryptosystems.

Reading List

Compulsory Readings

Title	
1	Nil

Additional Readings

Title	
1	Nil

