MA3523: INTRODUCTION TO ABSTRACT ALGEBRA

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title
Introduction to Abstract Algebra

Subject Code

MA - Mathematics
Course Number
3523
Academic Unit
Mathematics (MA)
College/School
College of Science (SI)
Course Duration
One Semester
Credit Units
3

Level
B1, B2, B3, B4 - Bachelor's Degree
Medium of Instruction
English
Medium of Assessment
English
Prerequisites
MA2503 Linear Algebra
Precursors
Nil
Equivalent Courses
Nil

Exclusive Courses
Nil

Part II Course Details

Abstract

The purpose of this course is to teach undergraduate student the fundamental concepts in abstract algebra, which are matrix operations, groups, vector spaces and linear transformations. The connection between matrix and group will be illustrated and practiced.

Course Intended Learning Outcomes (CILOs)

CILOs		Weighting (if DEC-A1 app.)		DEC-A2	
1	DEC-A3				
1	Fluent in matrix operations.	10	x	x	
2	Explain the concept of group, subgroup and homomorphism between groups.	30	x	x	x
3	Explain vector spaces in abstract field.	15	x	x	
4	Solve linear transformations in terms of matrix operations.	15	x	x	
5	Explain deeper theories of group, for example, the Sylow Theorem, generators and relations, and apply to matrix operations.	30	x	x	x

A1: Attitude
Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments
Demonstrate accomplishment of discovery/innovation/creativity through producing/constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

TLAs		Brief Description		CILO No. Hours/week (if applicable)
1	Lecture	Learning through teaching is primarily based on lectures	$1,2,3,4,5$	39 hours in total
2	Take-home assignments	Learning through take- home assignments helps students understand basic concepts and theories of group, vector space with abstract field, and linear transformations.	$1,2,3,4,5$	after-class

Assessment Tasks / Activities (ATs)

ATs		CILO No.	Weighting (\%) Remarks (e.g. Parameter for GenAI use)	
1	Test (Mid Term Exam)	$1,2,3$	30	Questions are designed for the first part of the course to see how well students have learned the concepts and theories of matrix operations and group.
2	Formative take-home assignments	$1,2,3,4,5$	20	The assignments provide students chances to demonstrate their achievements on abstract algebra learned in this course.

Continuous Assessment (\%)

50
Examination (\%)
50

Examination Duration (Hours)

2

Additional Information for ATs

50\% Continuous Assessment(s)
50% Examination (Duration: 2 hours, at the end of the semester)

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task

1. Test

Criterion

ABILITY to APPLY and EXPLAIN the basic concepts and methodology of abstract algebra
Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

2. Examination

Criterion

ABILITY to DERIVE mathematical proofs in abstract algebra
Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate

Marginal (D)
Basic
Failure (F)
Not even reaching marginal levels

Assessment Task

3. Formative take-home assignments

Criterion

CAPACITY for LEARNING to understand the principles of abstract algebra
Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic
Failure (F)
Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Permutation matrix, group, subgroup, homorphism, quotient group, abstract field, the characteristic polynomial, rotation, operations on subsets, the Sylow Theorem, generators and relations.

Reading List

Compulsory Readings
Title
1 "Algebra" by Michael Artin, Pearson (2rd edition), 2010.
Additional Readings

Title	
1	Nil

