MA2509: DISCRETE MATHEMATICS

Effective Term

Semester A 2023/24

Part I Course Overview

Course Title
Discrete Mathematics

Subject Code

MA - Mathematics
Course Number
2509
Academic Unit
Mathematics (MA)
College/School
College of Science (SI)
Course Duration
One Semester

Credit Units

3

Level
B1, B2, B3, B4 - Bachelor's Degree
Medium of Instruction
English
Medium of Assessment
English
Prerequisites
NII

Precursors
Nil
Equivalent Courses
Nil
Exclusive Courses
MA2185 Discrete Mathematics
MA2504 Discrete Mathematics

Part II Course Details

Abstract

This course introduces the basic concepts and techniques of discrete mathematics. It will help students understand the basic theory and recognize the applications of discrete mathematics. It trains students in the ability to think quantitatively and analyze problems critically.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if DEC-A1 app.)		DEC-A2	DEC-A3
1	explain at high levels concepts and implement basic operations in discrete mathematics.		x	x	
2	perform combinatorial analysis to solve counting problems.			x	
3	design and formulate mathematical models through relations, combinatorics, graphs, and trees.		x	x	
4	apply mathematical reasoning to comprehend and construct mathematical arguments.			x	
5	apply graph theory and other mathematical methods to both data structures and analysis of algorithms, and some other problems in computer sciences.			x	X

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability
Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments
Demonstrate accomplishment of discovery/innovation/creativity through producing/constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

TLAs		Brief Description		CILO No. applicable)
1	Lectures	Learning through teaching is primarily based on lectures.	$1,2,3,4,5$	40 hours in total
2	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	1	4 hours

3	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	2	2 hours
4	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	3	2 hours
5	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	4	1 hour
6	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	5	3 hours
7	Assignments	Learning through takehome assignments helps students understand basic concepts and techniques of discrete mathematics, and apply mathematical methods and analysis from discrete mathematics to some applications in computer sciences.	1, 2, 3, 4, 5	after-class
8	Online applications	Learning through online examples for applications helps students create and formulate simple mathematical models and apply to some problems in computer sciences.	3, 5	after-class
9	Math Help Centre	Learning activities in Math Help Centre provides students extra help.	1, 2, 3, 4	after-class

Assessment Tasks / Activities (ATs)

ATs		CILO No.	Weighting (\%) Remarks (e.g. Parameter for GenAI use)	
1	Quiz	1,2	10	Questions are designed for the first part of the course to see how well the students have learned the basic concepts.

2	Test	2,3	20	Questions are designed for the second part of the course to see how well the students have learned the basic techniques and recognize the applications of discrete mathematics.
3	Hand-in assignments	$1,2,3,4,5$	5	These are skills-based assessment to enable students to demonstrate the basic concepts, techniques of discrete mathematics and identify the applications.
4	Formative take-home assignments	$1,2,3,4,5$	5	The assignments provide students chances to demonstrate their achievements on discrete mathematics learned in this course.

Continuous Assessment (\%)

40

Examination (\%)

60

Examination Duration (Hours)

3

Additional Information for ATs

40\% Coursework
60\% Examination (Duration: 3 hours, at the end of the semester)

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task

1. Test/ Quizzes

Criterion

ABILITY to SOLVE in DETAIL and with ACCURACY the posed QUESTIONS
Excellent (A+, A, A-)
Correctly answer most of the questions
Good (B+, B, B-)
Correctly answer majority of the questions
Fair (C+, C, C-)
Correctly answer more than 40% of the questions

Marginal (D)

Correctly answer more than 30% of the questions

Failure (F)

Not even reaching marginal levels

Assessment Task

2. Hand-in assignments

Criterion

ABILITY to UNDERSTAND course materials and APPLY them on the posed QUESTIONS
Excellent (A+, A, A-)
Correctly answer almost all questions
Good (B+, B, B-)
Correctly answer most of the questions
Fair (C+, C, C-)
Correctly answer majority of the questions

Marginal (D)

Attempt on majority of the questions
Failure (F)
Not even reaching marginal levels

Assessment Task

3. Formative take-home assignments

Criterion

ABILITY to UNDERSTAND course materials and FULLY APPLY them on the posed QUESTIONS
Excellent (A+, A, A-)
Correctly answer almost all questions
Good (B+, B, B-)
Correctly answer most of the questions
Fair (C+, C, C-)
Correctly answer majority of the questions
Marginal (D)
Attempt on majority of the questions
Failure (F)
Not even reaching marginal levels

Assessment Task

4. Examination

Criterion

ABILITY to SOLVE in DETAIL and with ACCURACY the posed QUESTIONS

Excellent (A+, A, A-)
Correctly answer most of the questions
Good (B+, B, B-)
Correctly answer majority of the questions
Fair (C+, C, C-)
Correctly answer more than 40% of the questions
Marginal (D)
Correctly answer more than 30% of the questions
Failure (F)
Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Propositional Logic. Predicate Logic. Sets. Functions. Relations. Equivalence
\& Order Relations. Combinatorics. InclusionExclusion Principle. Recurrence Relations. Graphs. Directed Graphs. Connectivity. Euler $\backslash \&$ Hamilton Graphs. Weighted Graphs. Shortest Paths (Dijkstra's Algorithm), Trees. Rooted Trees. Binary Trees. Spanning Trees.

Reading List

Compulsory Readings

Title	
1	K. H. Rosen, Discrete Mathematics and Its Applications, 7th Edition, McGraw Hill, 2012

Additional Readings

Title	
1	Nil

