MA1300: ENHANCED CALCULUS AND LINEAR ALGEBRA I

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title

Enhanced Calculus and Linear Algebra I

Subject Code

MA - Mathematics
Course Number
1300
Academic Unit
Mathematics (MA)
College/School
College of Science (SI)

Course Duration

One Semester
Credit Units
3
Level
B1, B2, B3, B4 - Bachelor's Degree
Medium of Instruction
English
Medium of Assessment
English

Prerequisites

(i) HKDSE Mathematics Compulsory Part and Extended Part Module 1 (Level 5), or
(ii) HKDSE Mathematics Compulsory Part and Extended Part Module 2 (Levels 3 - 5); or equivalent

Precursors

Nil
Equivalent Courses
MA1200 Calculus and Basic Linear Algebra I

Exclusive Courses

MA1006 Calculus and Linear Algebra for Business
MA1508 Calculus

Part II Course Details

Abstract

This is the first of two required courses designed for students pursuing studies in mathematics, or engineering/science students requiring solid background in mathematics. It aims to

- strengthen skills and methods essential for study of further mathematics,
- develop fluency in concepts of limits and techniques of differential calculus, and
- nurture skills in logical thinking and translation of ideas with formal mathematical language.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if DEC-A1 app.)		DEC-A2	DEC-A3
1	implement mathematical methods of algebra, trigonometry and coordinate geometry proficiently.	16		X	X
2	explain properties of functions and manipulate expressions involving standard functions and their inverses.	16	X		X
3	apply concepts and theory of sequences to evaluate their limits.	20	X	X	
4	describe concepts on infinite series and test their convergence/divergence.	16	X		
5	explain at high level concepts of limit, continuity and differentiability of functions.	16	X		
6	perform techniques of differentiation to obtain derivatives of functions.	16		X	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability
Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments
Demonstrate accomplishment of discovery/innovation/creativity through producing/constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

TLAs		Brief Description	CILO No. applicable)	
1	Lectures	Learning through teaching is primarily based on lectures.	$1,2,3,4,5,6$	39 hours in total (A);46 hours in total (B)
2	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	1	2 hours in total (A); hours in total (B)

3	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	2	2 hours in total (A);3 hours in total (B)
4	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	3	3 hours in total (A);4 hours in total (B)
5	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	4	2 hours in total (A);3 hours in total (B)
6	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	5	2 hours in total (A);3 hours in total (B)
7	Tutorials	Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.	6	2 hours in total (A);3 hours in total (B)
8	Learning through take- home assignments helps students implement concepts of functions and limits, evaluate limits of sequences, series and functions, test for convergence/divergence of series as well as apply techniques of differential calculus.	$1,2,3,4,5,6$	after class	
9	Learning activities in Math Help Centre provides students extra assistance in study.	$1,2,3,4,5,6$	after-class,depending on need	
	Tutorials			

Additional Information for TLAs

Students are assigned to lecture sessions according to mathematical background and/or results in HKDSE mathematics. Students in Section B benefit from extra tuition hours.
Students are assigned to Section A if

- HKDSE Mathematics Compulsory Part (Passed) + Module 2 (Levels 4 - 5)
- New Foundation Year of CSE

Students are assigned to Section B if:

- HKDSE Mathematics Compulsory Part (Passed) + Module 2 (Levels 1 - 3)
- HKDSE Mathematics Compulsory Part (Passed) + Module 1 (Levels 5)

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (\%)	Remarks (e.g. Parameter for GenAI use)
1	Quizzes/Test(s)	1, 2, 3, 4, 5, 6	25	Questions are designed to see how well students have learned basic mathematical methods, concepts of functions, limits, continuity and differentiability, as well as techniques of differential calculus. These assessment tasks monitor students' progress and reveal gaps in knowledge.
2	Hand-in assignment(s)	1, 2, 3, 4, 5, 6	15	These are skills based assessment to see whether students are familiar with essential mathematical techniques, properties of functions, theory and methods of limits of sequences and series as well as techniques of differential calculus.

Continuous Assessment (\%)
40
Examination (\%)
60

Examination Duration (Hours)

3

Additional Information for ATs

40\% Coursework
60\% Examination (Duration: 3 hours, at the end of the semester)

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task

1. Quizzes/Test(s)

Criterion

1.1 CAPACITY of EXPLAIN and APPLY concepts and methods of differential calculus.

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic
Failure (F)
Not even reaching marginal levels

Assessment Task

2. Hand-in assignment(s)

Criterion
2.1 CAPACITY of SELF-DIRECTED LEARNING to understand the main concepts of differential calculus and master the mathematical techniques involved.

Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic
Failure (F)
Not even reaching marginal levels

Assessment Task

3. Examination

Criterion

3.1 ABILITY to APPLY mathematical techniques and theories to solve problems involving the intended learning outcomes.

Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

A) Polynomials; Mathematical induction
B) Coordinate geometry and conic sections; Basic trigonometry
C) Functions and inverses
D) Limits of sequences and infinite series
E) Limits, continuity and differentiability of functions
F) Techniques of differentiation, implicit, logarithmic and parametric differentiation; Successive differentiation

Reading List

Compulsory Readings

Title

1
https://www.cityu.edu.hk/ma/programmes/undergraduate/non-BSCM-students/topics-recommended-readings-servicing-courses\#heading4

Additional Readings

Title
1 James Stewart, Single Variable Calculus, 7th ed., BROOKS/COLE CENGAGE Learning, 2012
$2 \quad$ Basic Calculus and Linear Algebra (Compiled by Department of Mathematics, City University of Hong Kong), Pearson Custom Publishing, 2007
$3 \quad$ C. Henry Edwards and David E. Penney, Calculus: Early Transcendentals, 7th ed., Pearson Prentice Hall, 2008
4 Robert A. Adams, Calculus: A Complete Course, 6th ed., Pearson Addison Wesley, 2006

