MA1005: MATHEMATICS AND ARTS

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title
Mathematics and Arts

Subject Code

MA - Mathematics
Course Number
1005
Academic Unit
Mathematics (MA)
College/School
College of Science (SI)
Course Duration
One Semester

Credit Units

3
Level
B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English
Medium of Assessment
English
Prerequisites
Nil

Precursors
Nil
Equivalent Courses
Nil
Exclusive Courses
GE1349 Manifold Mirrors: The Crossing Paths of the Arts and Mathematics

Part II Course Details

[^0]techniques that artists have used, including: symmetry, conics and polyhedra, perspective, and projective geometry. Students will propose an artistic project that is closely integrated with mathematics. The main focus of the course will be on the handson application of mathematical ideas in the creation of artistic projects. This project-based approach will provide students with basic mathematical literacy. It will also encourage them to discover for themselves the relationship between arts and mathematics.

Course Intended Learning Outcomes (CILOs)

CILOs		Weighting (if DEC-A1 app.	DEC-A2		
1	Describe basic mathematical concepts that are relevant to art	35	x	x	x
2	Apply mathematical concepts and techniques appropriately	30	x	x	
3	Generate and articulate a personal insight about the role of mathematics in the arts based on their integration of historical materials, mathematical understanding, and artistic creation.	35	x		

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments
Demonstrate accomplishment of discovery/innovation/creativity through producing/constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

TLAs		Brief Description 1		Lectures Lectures about the history of mathematics in the arts and the basic concepts and techniques used.
2	Tutorials	Tutorials that develop a more in-depth understanding of the mathematical concepts, including short programming exercises, with the aim of ensuring the student's mathematical literacy.	1,2	26 hours in total

3	Project presentation and class critique	Project presentation and class critique to help students apply their ideas in their creative work, and to articulate their own evolving sense of the place of mathematics n the arts.	2,3

Assessment Tasks / Activities (ATs)

ATs		CILO No.	Weighting (\%) Remarks (e.g. Parameter for GenAI use)	
1	Presentation of one or more artworks with a strong mathematical component.	1	30	Students will discuss how mathematics interacted with arts/humanities, They will be assessed based on the theoretical depth of their analysis as well as their historical and mathematical accuracy.
2	Production of an artistic project	2,3	70	Students are assessed on the extent of their application of mathematical concepts in their creative work and on the clarity and accuracy of their presentation.

Continuous Assessment (\%)

100

Examination (\%)

0

Additional Information for ATs

100\% Coursework (30\% Homework assignment + 70\% Final project (presentation and/or written project))

All students’ work will be individually assigned.

Assessment Rubrics (AR)

Assessment Task

1. Identification of mathematical structure in existing artworks

Criterion

Ability to identify mathematical structure in art pieces
Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate
Marginal (D)
Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

2. Production and presentation of an artwork

Criterion

Capacity to articulate mathematical notions within a self-produced artwork
Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic
Failure (F)
Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Space and geometry; vectors, angles, and motions of the plane; planar symmetry: rosettes, whirls, friezes and wallpapers; symmetry in art: rugs, Chinese lattices, the work of Escher; aesthetic trade-offs; homothecies, similarities and affinities; conics and their eclosion in baroque art; mathematics and music: the geometry of canons, symmetry in music; perspective; drawing systems; projective and hyperbolic geometry; non-Euclidean symmetries; rule-driven creation.

Reading List

Compulsory Readings

Title	
1	Bruter, Claude. Mathematics and Art. Springer, 2002.
2	Cromwell, Peter. R. Polyhedra. Cambridge University Press. 1999
3	Cucker, Felipe. Manifold Mirrors: The Crossing Paths of the Arts and Mathematics. Cambridge University Press, 2013.
4	Emmer, Michele (Ed). The Visual Mind: Art and Mathematics. Cambridge: MIT Press, 1993.
5	Emmer, Michelle (Ed). The Visual Mind: Art and Mathematics: Vol. 2., MIT Press 2005.
6	Kalajdzievski, Sasho. Math and Art: An Introduction to Visual Mathematics. Chapman and Hall, 2008.
7	Kappraff, Jay. Connections, The Geometric Bridge between Art and Science. World Scientific Pub Co Inc. 2002

8	Kinsey, L. Christine and Teresa E. Moore. Symmetry, Shape and Space. Key College. 2006
9	Pedoe, Dan. Geometry and the Visual Arts. Dover Publications. 2011
10	Washbourn, Dorothy K. and Donald W. Crowe, Symmetries of Culture: Theory and Practice of Plane Pattern Analysis. University of Washington Press. 1991
11	Weyl, Hermann. Symmetry. Princeton University Press. 1983

Additional Readings

Title	
1	Art section of the Math Archives http://archives.math.utk.edu/topics/artMusic.html
2	Computer Generated Art http://www.math.brown.edu/~banchoff/art/PAC-9603/welcome.html
3	Leonardo on line http://www.leonardo.info/
4	Mathematics across the curriculum at Dartmouth College http://www.dartmouth.edu/~matc/math5.geometry/
5	Nexus network journal http://www.nexusjournal.com/

[^0]: Abstract
 This course aims to bridge the gap between the arts/humanities and mathematics. By providing a historical overview of key moments of interaction between arts and mathematics, it will introduce students to the basic mathematical concepts and

