IS3240: ADVANCED BUSINESS PROGRAMMING IN PYTHON

Effective Term Semester A 2022/23

Part I Course Overview

Course Title Advanced Business Programming in Python

Subject Code IS - Information Systems Course Number 3240

Academic Unit Information Systems (IS)

College/School College of Business (CB)

Course Duration One Semester

Credit Units

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites CB2240 Introduction to Business Programming in Python or IS2240 Python Programming for Business

Precursors Nil Equivalent Courses Nil

Exclusive Courses Nil

Part II Course Details

Abstract

The Advanced Business Programming in Python provides an introduction to big data handling and analysis and supervised machine learning through Python programming with applications in business settings. Key topics include data analysis and visualization using Python libraries (NumPy, pandas, matplotlib), database handling with SQLite, data extraction with web scraping and API connection, data wrangling, and a glimpse into supervised machine learning (regression and classification). Upon completion, students will be equipped with the programming and analytical skills to engage in datadriven decision-making in modern organizations. This course will also provide the knowledge and training to prepare students for more advanced data analytics and machine learning subjects.

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Explain the structure of a Python program and understand applications of computer programming in data handling and analyses.	20	х		
2	Read, analyze, test and debug Python programs.	20	Х	X	
3	Identify, characterize, and analyze a problem, and write Python programs to solve the business problem.	30		x	X
4	Apply Python programming knowledge and techniques to address data-driven business problems, which involve advanced skills such as data analysis and visualization, database connection, web scraping.	30		x	X

Course Intended Learning Outcomes (CILOs)

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	TLA1:Lecture	Concepts and general knowledge of advanced programming techniques in Python related to data handling and analysis are explained.	1, 2, 3, 4	Seminar: 3 Hours/Week

Teaching and Learning Activities (TLAs)

2	TLA2: Laboratory Exercise	Hands-on computer exercises related with business domains are designed to help students apply what they have learned in lecture. Major assignment involves individual work or teamwork by a group of students in the same laboratory group to solve a specific business problem.	2, 3, 4	Seminar: 3 Hours/Week
3	TLA3:Tutorial	Concepts, techniques, and good practices of programming are discussed.	1, 2, 3, 4	Seminar: 3 Hours/Week
4	TLA4:Class Discussion and Presentation	Perform in class programming exercises in tutorial and laboratory to get immediate feedback from students. This is followed by discussion of the exercises afterwards to reinforce the learning of the materials tested. Presentation of laboratory results and assignments may be required.		Seminar: 3 Hours/Week

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	AT1: Participation and Laboratory ExercisesEach laboratory has in-class exercises to assess students' hands-on programming skills of the topics covered.		20	
2	AT2: Individual AssignmentThe individual assignment, including programme codes, results, written report and presentation, is required to assess the technical analysis and implementation skill sets of the students.	2, 3, 4	20	

3	AT3: Group ProjectThe	1, 2, 3, 4	20	
	group project serves the			
	purpose of continuous			
	assessment of students'			
	understanding of the key			
	domain areas and as an			
	indicator of how well the			
	students have performed.			

Continuous Assessment (%)

60

```
Examination (%)
```

40

Examination Duration (Hours)

2

Assessment Rubrics (AR)

Assessment Task

AT1: Participation and Laboratory Exercises

Criterion

Ability to accurately describe and understand the concepts in Python programming related to big data handling and analysis

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

AT1: Participation and Laboratory Exercises

Criterion

Ability to quickly understand and analyze a Python program

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

AT1: Participation and Laboratory Exercises

Criterion

Ability to creatively, effectively and efficiently write Python programs

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

AT1: Participation and Laboratory Exercises

Criterion

Capability to creatively and effectively develop applications that involve advanced techniques to solve business problems

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels Assessment Task AT2:Individual Assignment

Criterion Ability to effectively test and debug Python programs

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task AT2:Individual Assignment

Criterion Ability to creatively, effectively and efficiently write Python programs

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

AT2:Individual Assignment

Criterion

Capability to creatively and effectively develop applications that involve advanced techniques to solve business problems

Excellent (A+, A, A-) High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task

AT3:Group Project

Criterion

Ability to accurately describe and understand the concepts in Python programming related to big data handling and analysis

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

AT3:Group Project

Criterion

Ability to accurately understand and analyze a Python program

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

AT3:Group Project

Criterion

Ability to creatively, effectively and efficiently write Python programs

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

AT3:Group Project

Criterion

Capability to creatively and effectively develop applications that involve advanced techniques to solve business problems

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task AT4:Final Examination

Criterion

Ability to accurately describe and understand the concepts in Python programming related to big data handling and analysis

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

AT4:Final Examination

Criterion Ability to accurately understand and analyze a Python program

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

AT4:Final Examination

Criterion

Ability to creatively, effectively and efficiently write Python programs

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

AT4:Final Examination

Criterion

Capability to creatively and effectively develop applications that involve advanced techniques to solve business problems

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Python, big data, machine learning, business application, data handling, data analysis, NumPy, Pandas, Matplotlib, Scikit-Learn, SQL, web scraping, database connection, data wrangling, regression, and classification.

Reading List

Compulsory Readings

	Title	
1	Nil. All materials will be distributed through lecture slides and supplementary materials on Canvas.	

Additional Readings

	Title
1	Wes McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2nd Edition, O'Reilly Media, 2017.
2	David I. Schneider, An Introduction to Programming Using Python, 1st Edition, Pearson, 2016.
3	Jake VanderPlas, Python Data Science Handbook: Essential Tools for Working with Data, 1st Edition, O'Reilly Media, 2016.
4	Fabio Nelli, Python Data Analytics: With Pandas, NumPy, and Matplotlib, 2nd Edition, Apress, 2018.

5	Jason Myers, Rick Copeland, Essential SQLAlchemy: Mapping Python to Databases, 2nd Edition, O'Reilly Media, 2015.
6	Ryan Mitchell, Web Scraping with Python: Collecting More Data from the Modern Web, 2nd Edition, O'Reilly Media, 2018.
7	Andreas Müller, Sarah Guido, Introduction to Machine Learning with Python: A Guide for Data Scientists, 1st Edition, O'Reilly Media, 2016.