GE1358: COORDINATE GEOMETRY

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title

Coordinate Geometry

Subject Code

GE - Gateway Education

Course Number

1358

Academic Unit

Mathematics (MA)

College/School

College of Science (SI)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

GE Area (Primary)

Area 3 - Science and Technology

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

Nil

Precursors

Nil

Equivalent Courses

MA1501 Coordinate Geometry

Exclusive Courses

Nil

Part II Course Details

Abstract

This course introduces students to coordinate geometry, which is closely related to art, design, architecture, computer graphics. The content includes curves in two-dimensional space, curves in three-dimensional space, surfaces in three-dimensional space. The emphasis is on developing the concept of coordinate representation of some basic geometric objects in both two- and three-dimensional spaces and understanding how to compute some important geometric quantities like distance, normal vector, etc.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Explain the concept of Cartesian coordinate, polar coordinate, and their usage for two dimensional curves		X	X	
2	Explain the concept of curves based on Cartesian coordinate and parameterization, describe the tangent vector along curves, and explain how to compute distance between two non-intersected straight lines		x	х	
3	Explain the concept of surface based on Cartesian coordinate, cylindrical and spherical coordinates, describe the normal vector and tangent plane of surfaces, explain the angle between two planes		x	X	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Learning through teaching is primarily based on lectures.	1, 2, 3	39 hours in total
2	Take-home assignments	Learning through take- home assignments helps students understand basic concepts and techniques of coordinate geomety.	1, 2, 3	After-class

3	3	Math Help Centre	Learning activities	1, 2, 3	After-class
		_	in Math Help Centre		
			provides students extra		
			help.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	One Test	1, 2, 3	18	Questions are based on curves in both two- and three-dimensional spaces, and surfaces to assess students' understanding of basic concepts and skills
2	Class Exercises	1, 2, 3	3	The questions enable students to apply basic concepts and techniques of coordinate geometry to a range of mathematical problems.
3	Three Take-home Assignments	1, 2, 3	9	The assignments provide students chances to demonstrate their achievements on techniques of coordinate geometry learned in this course.

Continuous Assessment (%)

30

Examination (%)

70

Examination Duration (Hours)

2

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task

1. Test

Criterion

Ability to apply the fundamental concepts and methodology of coordinate geometry to solve a range of mathematical problems

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

4 GE1358: Coordinate Geometry
Fair (C+, C, C-) Moderate
Marginal (D) Basic
Failure (F) Not even reaching marginal levels
Assessment Task 2. Hand-in assignments
Criterion Ability to understand the basic concepts and techniques of coordinate geometry
Excellent (A+, A, A-) High
Good (B+, B, B-) Significant
Fair (C+, C, C-) Moderate
Marginal (D) Basic
Failure (F) Not even reaching marginal levels
Assessment Task 3. Formative take-home assignments
Criterion Ability to demonstrate students' achievements on the methods of coordinate geometry learned in this course
Excellent (A+, A, A-) High
Good (B+, B, B-) Significant
Fair (C+, C, C-) Moderate
Marginal (D) Basic
Failure (F)

Not even reaching marginal levels

Assessment Task

4. Examination

Criterion

Ability to solve problems of curves and surfaces in two and three dimensional space

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

- · Points and Lines in Space: point, line, plane, circle, distance
- · Transforms and Coordinates: parameterization, polar coordinate, cylindrical and spherical coordinates
- · The Conics: cylinder, sphere, ellipsoid, saddle, hyperbolas
- · Curves and Surfaces: intersection between curves and surface, surfaces in three dimensional space
- · Geometry: Art, Design and Architecture.

Reading List

Compulsory Readings

	Title
1	Coordinate Geometry (by Luther Pfahler Eisenhart) Dover Publications (March 4, 2005)

Additional Readings

	Title
1	The Complete Guide to Perspective Drawing: From One-Point to Six-Point (by Craig Attebery) Routledge (May 10, 2018)
2	Drawing Geometry: A Primer of Basic Forms for Artists, Designers and Architects (by Jon Allen) Floris Books (October 15, 2007)
3	Geometry and the Visual Arts (by Dan Pedoe) Dover Publications (March 17, 2011)

Annex (for GE courses only)

A. Please specify the Gateway Education Programme Intended Learning Outcomes (PILOs) that the course is aligned to and relate them to the CILOs stated in Part II, Section 2 of this form:

Please indicate which CILO(s) is/are related to this PILO, if any (can be more than one CILOs in each PILO)

PILO 1: Demonstrate the capacity for self-directed learning

1, 2, 3

PILO 2: Explain the basic methodologies and techniques of inquiry of the arts and humanities, social sciences, business, and science and technology

1, 2, 3

PILO 3: Demonstrate critical thinking skills

1, 2, 3

PILO 4: Interpret information and numerical data

1, 2, 3

PILO 5: Produce structured, well-organised and fluent text

1, 2, 3

PILO 6: Demonstrate effective oral communication skills

1, 2, 3

PILO 7: Demonstrate an ability to work effectively in a team

1, 2, 3

B. Please select an assessment task for collecting evidence of student achievement for quality assurance purposes. Please retain at least one sample of student achievement across a period of three years.

Selected Assessment Task

Examination Papers