EF2452: MATHEMATICS FOR ECONOMICS AND FINANCE

Effective Term

Semester A 2022/23

Part I Course Overview

Course Title
Mathematics for Economics and Finance

Subject Code

EF - Economics and Finance
Course Number
2452
Academic Unit
Economics and Finance (EF)
College/School
College of Business (CB)
Course Duration
One Semester
Credit Units
3
Level
B1, B2, B3, B4 - Bachelor's Degree
Medium of Instruction
English
Medium of Assessment
English
Prerequisites
Nil
Precursors
Nil
Equivalent Courses
Nil

Exclusive Courses
Nil

Part II Course Details

Abstract

This course aims to equip students with a set of fundamental mathematical concepts underlying decision-making in economics and finance. It also aims to develop students' creativity and originality through various assessment tasks and teaching and learning. The lectures encourage students to develop their discovery ability through in-class discussions, which enhance students' understanding of mathematical concepts. Students are required to apply fundamental mathematical concepts to solve real world problems in designed scenarios. Only an accurate understanding of the underlying economic concepts can direct which mathematical tools can be applied to the situation. A final interpretation of the numerical solution with economic concepts shows the accomplishment of students' ability to discover and innovate.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if DEC-A1 app.)		DEC-A2	DEC-A3
1	Demonstrate proficiency over underlying fundamental mathematical tools in economics and finance. Students are encouraged to discover the underlying economic theory in real world cases and designed scenarios.	40	X	X	
2	Identify and apply the requisite quantitative techniques towards investigating decisionmaking in economics and finance. The attitude and ability to discover and innovate are demonstrated in case studies to derive the mathematical solution from the real-life applications.	50	X	X	X
3	Analyze economics and financial issues through a more quantitative approach. The mathematical solutions have to be completed by appropriate economic interpretation. Students are to innovate and broaden their understanding of real world economic issues.	10		x	x

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability
Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments
Demonstrate accomplishment of discovery/innovation/creativity through producing/constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Students are encouraged to apply mathematical concepts to solve economic problems. It helps reveal students' attitudes to innovate and apply	1, 2	3 hours lecture per week
2	In-class presentation by students	Instructors will use some mini-projects to motivate and guide students to discover answers to economic problems and ask them to present their findings in class. This will enhance their ability of innovation and increase their accomplishments of solving real world problems.	2, 3	
3	Group discussion and self-learning exercises.	In classes, teachers will raise the question and let students find the answer and solve the problems via group discussion. Teachers can guide the students to compare different concepts (e.g. public goods, optimal tax rate) in different economies and practise model setting with computer software (e.g. set up a matrices model with Excel). Students are to analyse and synthesize mathematical concepts with economic concepts and practise their ability to discover and innovate.	3	

Assessment Tasks / Activities (ATs)

ATs		CILO No.	Weighting (\%)	
1	Midterm examination The midterm exams will include questions that require students to identify and apply the mathematic tools to solve optimization problems in economics and finance.		Remarks (e.g. Parameter for GenAI use)	

| 2 | Assignments, Quizzes,
 and projects
 Students will be asked
 to complete an in-
 course assessment which
 may be in the format
 of multiple choice,
 short questions, or long
 questions. Students
 must exercise and apply
 their own judgement
 using the skills taught in
 class in order to analyse
 economics and financial
 issues through a more
 quantitative approach.The
 assignments are designed
 to help students master
 the mathematical tools
 and let them better
 understand the economic
 intuitions behind
 mathematical derivation.
 Projects are assigned to
 encourage students to
 solve real world economic
 problems or analyse
 contemporary hot issues.
 This will stimulate
 students' interest and
 let them get experienced
 with practical issues. | | 40 |
| :--- | :--- | :--- | :--- | :--- |

Continuous Assessment (\%)

60

Examination (\%)

40

Examination Duration (Hours)

2

Additional Information for ATs

Students are required to pass both coursework and examination components in order to pass the course.

Assessment Rubrics (AR)

Assessment Task

1. Midterm examination

Criterion

1.1 Ability to solve mathematical problems such as, first order recurrence, univariate differentiation, univariate optimization, etc.
1.2. Ability to solve optimization problems in economic and financial decisions, e.g., monopolistic and competitive firms' profit maximization problem.

Excellent (A+, A, A-)

High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate

Marginal (D)

Basic
Failure (F)
Not even reaching marginal levels

Assessment Task

2. Assignments, Quizzes, and projects

Criterion

2.1 Capacity to solve mathematical problems such as first order recurrence, derivatives, continuous compounding, minimization and maximization with or without constraints, matrix operation, system of equations.
2.2 Ability to use proper mathematical tools to solve economic and financial problems, such as equilibrium prices and quantity, elasticity, cost minimization, profit maximization, utility maximization, asset pricing using net current value, constructing arbitrage portfolios, etc.

Excellent (A+, A, A-)

High
Good (B+, B, B-)
Significant
Fair (C+, C, C-)
Moderate

Marginal (D)

Basic
Failure (F)
Not even reaching marginal levels

Assessment Task

3. Examination

Criterion

3.1 Ability to solve mathematical problems such as partial derivatives, multivariate optimization, constrained optimization, matrix operation, linear equations in matrix format, etc.
3.2 Ability to convert an economic and financial optimization problem into a tractable mathematical problem and solve it using proper techniques.

Excellent (A+, A, A-)
High

Good (B+, B, B-)

Significant
Fair (C+, C, C-)
Moderate
Marginal (D)
Basic
Failure (F)
Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Mathematical Concepts:
Linear and Non-Linear Functions
Systems of Equations
Matrix and Linear Algebra
Sequences and Series
Calculus
Univariate Optimization
Optimization in Two Variables
Constrained Optimization
Applications:
Consumption Functions
Production \& Costs
Elasticity, Revenues and Profits
Supply and Demand
Discounting and Net Present Value
Pricing of Risky Assets
Input-output model

Reading List

Compulsory Readings

| Title | |
| :--- | :--- | :--- |
| 1 | Mathematics for Economics and Finance by Martin Anthony and Norman Briggs, Cambridge University Press. |

Additional Readings

Title	
1	Essential Mathematics for Economic Analysis (2nd ed.) by Knut Sydsaeter and Peter Hammond, Prentice Hall, 2006.
2	Mathematics for Economists by Carl P. Simon and Lawrence E. Blume, W.W. Norton, 1994.

