EE4215: CYBERSECURITY TECHNOLOGY

Effective Term Semester B 2022/23

Part I Course Overview

Course Title Cybersecurity Technology

Subject Code EE - Electrical Engineering Course Number 4215

Academic Unit Electrical Engineering (EE)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites EE3315 Internet Technology

Precursors

EE2302 Foundations of Information Engineering and (EE3331 Probability Models in Information Engineering or EE3001 Foundations of Data Engineering)

Equivalent Courses

Nil

Exclusive Courses Nil

Part II Course Details

Abstract

This course aims to provide students with an understanding of the principles of cybersecurity and computer security technologies, including the principles of ethical hacking, cryptography, and blockchain technologies.

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Describe the basic concepts and current technologies of cybersecurity.		X		
2	Apply cryptographic techniques to defend against attacks.		X	X	
3	Describe the defensive techniques and architectures in defending against cyber attacks.		X	X	
4	Apply penetration testing techniques to assess network security.		Х	X	

Course Intended Learning Outcomes (CILOs)

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Key concepts are described and illustrated. Key concepts are worked out based on problems.	1, 2, 3, 4	3 hrs/wk
2	Lab	Key concepts are applied to investigate or solve network security problems.	1, 2, 3, 4	

Teaching and Learning Activities (TLAs)

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Tests/Quizzes (at least 2)	1, 2, 3, 4	30	
2	Mini-project	1, 2, 3, 4	15	
3	#Assignments (at least 3)		20	

3 EE4215: Cybersecurity Technology

Continuous Assessment (%)

65

Examination (%)

35

Examination Duration (Hours)

2

Additional Information for ATs

Remarks:

To pass the course, students are required to achieve at least 30% in course work and 30% in the examination. Also, 75% laboratory attendance rate must be obtained.

may include homework, classwork, or presentation

Assessment Rubrics (AR)

Assessment Task Examination

Criterion Achievements in CILOs

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Coursework

Criterion Achievements in CILOs

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Introduction to Cybersecurity and Cryptography

Computer security concepts, the CIA triad, model for network security, threats, vulnerabilities and attacks, perfect secrecy, computational security, and pseudo-randomness.

Cryptographic Techniques

Symmetrical cipher: block cipher, DES, AES, confidentiality modes; Asymmetrical cipher: public key infrastructure, RSA, Diffie-Hellman key exchange; hash functions, message integrity and digital signature; Selected advanced topics (e.g., elliptic curve cryptography, post-quantum cryptography).

Cybersecurity - Defensive Approach

Red Team vs Blue Team, Endpoint Security; Router & Switch Security; Network Security Devices: Firewalls, IDS, VPNs.

Cybersecurity - Offensive Approach

Security Assessment and Penetration Testing; Hacking Techniques; Web Hacking; Information Gathering; Vulnerability Assessment; Target Exploitation; Privilege Escalation; Maintaining Access.

Reading List

Compulsory Readings

	itle
1	il

Additional Readings

	Title			
1	Justin Seitz, Black Hat Python: Python Programming for Hackers and Pentesters, No Starch Press; 1 edition (December 21, 2014) (ISBN-13: 978-1593275907, ISBN-10: 1593275900)			
2	Andreas Bolfing, Cryptographic Primitives in Blockchain Technology: a Mathematical Introduction, Oxford University Press, 2020			
3	S.J. Nielson, C.K. Monson: Practical Cryptography in Python: Learning Correct Cryptography by Example, Apress; 1st ed. edition (September 27, 2019)			
4	Ugo Ekpo: Introduction to Cyber Security: Fundamentals, Independently published (October 12, 2018)			
5	Seymour Bosworth, Michel E. Kabay and Eric Whyne , Computer Security Handbook, Sixth Edition [electronic resource] (John Wiley & Sons, 2014, ISBN:9781118127063)			
6	William Stallings, Cryptography and network security: principles and practice, (Pearson, 2014, ISBN 9780133354690)			
7	Richard E. Blahut , Cryptography and secure communication [electronic resource] (Cambridge University Press, 2014, ISBN 9781107014275)			
8	Omar Santos, Cisco CyberOps Associate CBROPS 200-201 Official Cert Guide, (Cisco Press, 2020, ISBN-10: 0-13-680783-6)			