EE3331: PROBABILITY MODELS IN INFORMATION ENGINEERING

Effective Term Semester B 2022/23

Part I Course Overview

Course Title Probability Models in Information Engineering

Subject Code EE - Electrical Engineering Course Number 3331

Academic Unit Electrical Engineering (EE)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites MA2001 Multi-variable Calculus and Linear Algebra

Precursors Nil

Equivalent Courses Nil

Exclusive Courses Nil

Part II Course Details

Abstract

This course introduces probability models and their applications to major areas of information engineering, including digital communications, signal processing and computer networks. The aims are to elucidate the fundamental concepts of probability theory through examples, to explain the importance of random variables and unconditional/conditional distributions, and to develop the student ability in solving problems with randomness and uncertainty. This course is project-based, which provides hands-on experience to students and conveys the relevance and usefulness of probability modelling to practical engineering problems that undergraduate students can appreciate.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Explain basic concepts in probability, and apply them to solve real-life problems.		Х	Х	
2	Explain random variables and their distributions		Х	X	
3	Apply random variables and probability distributions to formulate and solve engineering problems.		x	x	
4	Apply computer simulations for probability modelling with analysis and verification.		Х	Х	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Key concepts are described and illustrated. Key concepts are worked out based on examples or problems.	1, 2, 3, 4	3 hrs/wk
2	Project	Key concepts are worked out by experiments and/ or simulations.	2, 4	

Teaching and Learning Activities (TLAs)

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Tests (min: 2) and quizzes	1, 2, 3	30	
2	#Assignments and Lab Assignments (min.: 3)	1, 2, 3, 4	20	

Continuous Assessment (%)

50

Examination (%)

50

Examination Duration (Hours)

2

Additional Information for ATs

Remark:

To pass the course, students are required to achieve at least 30% in coursework and 30% in the examination.

may include homework, tutorial exercise, project/mini-project, presentation

Assessment Rubrics (AR)

Assessment Task Examination

Criterion Achievements inCILOs

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reachingmarginal levels

Assessment Task Coursework

Criterion Achievements inCILOs

Excellent (A+, A, A-) High Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reachingmarginal levels

Part III Other Information

Keyword Syllabus

<u>Probability</u>

Definitions, rules and axioms, independent and dependent events, conditional probability, Bayes' rule, combinatorics

<u>Random Variables</u>

Discrete and continuous random variables, distribution functions, multiple random variables, expected values, conditional distribution functions and expectation

<u>Random Processes</u> Stationarity, correlation, ergodicity, Poisson processes

<u>Applications of Probability Modelling</u> Detection, estimation, queueing theory, data compression

Reading List

Compulsory Readings

	Fitle	
1	Nil	

Additional Readings

	0
	Title
1	Sheldon M. Ross, Introduction to Probability Models, 11th ed., Academic Press, 2014.
2	Roy D. Yates and D. J. Goodman, Probability and Stochastic Processes: a Friendly Introduction for Electrical and Computer Engineers, 3rd ed., Wiley, 2014.
3	S. Kay, Intuitive Probability and Random Processes using MATLAB, Springer, 2006
4	H. Pishro-Nik, Introduction to Probability, Statistics, and Random Processes, Kappa Research LLC, 2014