EE1002: PRINCIPLES OF ELECTRICAL ENGINEERING

Effective Term Semester A 2022/23

Part I Course Overview

Course Title Principles of Electrical Engineering

Subject Code EE - Electrical Engineering Course Number 1002

Academic Unit Electrical Engineering (EE)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites Nil

Precursors Nil

Equivalent Courses Nil

Exclusive Courses Nil

Part II Course Details

Abstract

This course is aimed at providing students with an understanding of the concepts, impacts, and basic principles of electronic engineering.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Consolidate mathematical concepts on differentiation, integration, trigonometry and complex numbers		x	х	
2	Describe the basic principles of electric charges and electrical conduction		X	Х	
3	Apply Kirchhoff's laws to analyze DC circuits		X	x	
4	Apply complex impedance concept to analyze simple AC circuits with capacitors and inductors		Х	Х	

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Lectures on various fundamental knowledge and concepts in the field of electronic engineering.	1, 2, 3, 4	3 hrs/wk
2	Tests	To test the students' understanding on the lecture materials.	1, 2, 3, 4	
3	Labs / Practice Classes	Conduct experiments and class exercises to deepen key concepts covered in lectures and tutorials	3, 4	2hrs/wk (4 week)

Teaching and Learning Activities (TLAs)

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Tests (min.: 2)	1, 2, 3, 4	30	
2	#Assignments (min.: 3)	1, 2, 3, 4	10	
3	Lab exercises and reports	3, 4	10	

Continuous Assessment (%)

50

Examination (%)

50

Examination Duration (Hours)

2

Additional Information for ATs

Remark:

To pass the course, students are required to achieve at least 30% in course work and 30% in the examination. Also, 75% laboratory attendance rate must be obtained.

may include homework, tutorial exercise, project/mini-project, presentation

Assessment Rubrics (AR)

Assessment Task

Examination

Criterion Achievements in CILOs

Excellent (A+, A, A-) High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task Coursework

Criterion Achievements in CILOs Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Mathematical Foundations for Circuit Analysis

Introduction to differentiation, derivative, gradient, rate of change; introduction to integration, integral, area; fundamentals to differential equations; trigonometry; complex numbers (rectangular form and phasor form)

Review of Electrical Conduction

Atomic structure and electric charge, conductors, insulators, electric field and magnetic field, electric current, resistance, potential

DC Circuit analysis

Ohm's law, Kirchhoff's law, power and energy; resistor, sources, open- and short-circuit; series and parallel networks; ammeter, voltmeter; mesh and nodal analysis, Thevenin's and Norton's theorems; maximum power transfer

AC Circuit Analysis

Capacitor and inductor; first-order transient circuit (RL and RC circuits); complex impedance; sinusoids; instantaneous and average power

Reading List

Compulsory Readings

	Title
1	M. O. Sadiku, S. M. Musa and C. K. Alexander, "Applied Circuit Analysis," McGraw Hill, 2012.

Additional Readings

	Title
1	N. Storey, "Electronics: A System Approach," Pearson, 5th edition, 2013.
2	A. R. Hambley, "Electrical Engineering: Principles and Applications," Pearson, 6th edition, 2013.
3	J. N. Burghartz, "Guide to State-of-the-Art Electron Devices", Wiley and IEEE Press, 2013.