CS4389: DECENTRALIZED APPLICATIONS DEVELOPMENT

Effective Term Semester A 2022/23

Part I Course Overview

Course Title Decentralized Applications Development

Subject Code CS - Computer Science Course Number 4389

Academic Unit Computer Science (CS)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units 3

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites CS3343 Software Engineering Practice

Precursors CS2204 Fundamentals of Internet Applications Development

Equivalent Courses Nil

Exclusive Courses Nil

Part II Course Details

Abstract

Decentralized applications (Dapps) are software applications that are run by multiple users on decentralized networks. Dapps have found successful usage scenarios in many domains such as software development, finance, customer services, and logistics. Many Dapps scenarios include the use of a kind of programs called smart contracts to perform transactions involving multiple users. The aim of this course is to provide a comprehensive study on the software design and development of Dapps, its associated software engineering practices, programming languages, development and testing environments, tools, evaluation, and current trends and issues in the aspect of software engineering. Students are expected to design, implement, test, maintain and evaluate programs that meet the constraints and requirements of high quality decentralized applications.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Describe the essential requirements, constraints and technology stack in developing Dapps.		Х		
2	Demonstrate working knowledge on the development, test, and deployment environments of Dapps.			X	
3	Design, implement and maintain Dapps.				X
4	Evaluate the correctness and performance of Dapps.		Х		

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lectures	Lectures will cover the essential constraints, requirement knowledge, system models and frameworks on the development and deployment of Dapps.	1, 2, 3, 4	3 hours/week

Teaching and Learning Activities (TLAs)

2	Tutorials	Technical questions and study cases are provided to lead students' discussions and practice of various skills in Dapps software development. A series of hands-on practices on developing and testing a Dapp from scratch will be used in tutorial sessions to strengthen students' skillset and knowledge.	1, 2, 3, 4	8 hours/semester
3	Quiz	A quiz will cover all topics learned in lectures and practices gained via tutorials as well as the working knowledge in setting up the decentralized applications' environment in the group project.	2, 3, 4	
4	Project	A team-based, comprehensive software engineering project gives students an opportunity to collaborate and share in their learning process. All major topics from design to coding and testing learned in the course are required in the project.	1, 2, 3, 4	
5	Presentation	Presentation will cover all aspects of the project including design decision and rationale as well as the justification, implementation and evaluation of the project.	2, 3, 4	

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Quiz	2, 3, 4	15	
2	Project	1, 2, 3, 4	40	
3	Presentation	1, 2, 3, 4	5	

Continuous Assessment (%)

60

Examination (%)

Examination Duration (Hours)

2

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task

Quiz

Criterion

1.1 ABILITY to describe, analyse and apply software engineering techniques and write programs and tests for decentralized applications

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Project

Criterion

2.1 ABILITY to set up and apply software engineering environment, tools, techniques, practices, and programming languages to develop and deploy decentralized applications2.2 ABILITY to function as a team of developers2.3 ABILITY to report in an organised and logical way

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Presentation

Criterion

3.1 ABILITY to summarize and present complex technical ideas systematically

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Examination

Criterion

4.1 ABILITY to explain software development and deployment technology stack4.2 ABILITY to apply software design techniques and write code for decentralized applications4.3 ABILITY to ensure the correctness and performance of decentralized applications

Excellent (A+, A, A-)

High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Decentralized applications, blockchain, blockstack, transactions, smart contract, wallet, testing, debugging, performance, programming language, tools and frameworks.

Syllabus

· Technology stack of decentralized applications

Overview of different kinds of application styles including centralized, decentralized and distributed. Technology stacks including decentralized filesystem, decentralized networks, software architecture, programming language, platform, wallet, virtual machine, API framework and library, development and testing environments.

- Problem solving through decentralized application programming Solidity programming language. Implementation of wallet, transaction, smart contract, and backend and frontend application logics.
- Software correctness and performance Analysis, code review, debugging, testing, fuzzing, and maintenance.

Reading List

Compulsory Readings

	Title	
1	Jil	

Additional Readings

	Title
1	Ethereum Smart Contract Development: Build blockchain-based decentralized applications using solidity. Mayukh Mukhopadhyay. Packt Publishing Ltd, 2018. ISBN 1788472624.
2	Introducing Ethereum and Solidity: Foundations of Cryptocurrency and Blockchain Programming for Beginner. Chris Dannen. Apress; 1st ed. Edition, 2017. ISBN 1484225341.
3	Solidity. https://github.com/ethereum/solidity and https://solidity.readthedocs.io/en/v0.4.24/
4	Ethereum. https://www.ethereum.org/
5	Decentralized applications: Harnessing bitcoin's blockchain technology. Siraj Raval. O'Reilly. 2016. ISBN 9781491924549.