
1 CS4381: Advanced Software Design

CS4381: ADVANCED SOFTWARE DESIGN

Effective Term
Semester A 2022/23

Part I Course Overview
Course Title
Advanced Software Design

Subject Code
CS - Computer Science
Course Number
4381

Academic Unit
Computer Science (CS)

College/School
College of Engineering (EG)

Course Duration
One Semester

Credit Units
3

Level
B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction
English

Medium of Assessment
English

Prerequisites
CS3342 Software Design

Precursors
MA2185 Discrete Mathematics

Equivalent Courses
Nil

Exclusive Courses
Nil

2 CS4381: Advanced Software Design

Part II Course Details
Abstract
This course aims to introduce the advanced techniques for the design of software applications. Students will develop their
technical competence in modelling and designing sequential and concurrent software to satisfy software requirements of
design solutions from multiple perspectives.

Course Intended Learning Outcomes (CILOs)

 CILOs Weighting (if
app.)

DEC-A1 DEC-A2 DEC-A3

1 Explore the challenges in developing
dependable software.

x

2 Create software models by using an array
of semi-informal and formal tools and from
multiple perspectives.

3 Develop the competence to reason software
models.

x

A1: Attitude
Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity,
asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability
Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills
to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to
real-life problems.

A3: Accomplishments
Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new
artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

 TLAs Brief Description CILO No. Hours/week (if
applicable)

1 Lecture and tutorial Explain key concepts
such as theories and
formal models of
software applications.

1, 2, 3 Lecture:
3 hours/week
Tutorial:
8 hours/semester

3 CS4381: Advanced Software Design

2 Coursework Model design scenarios
by different kinds of semi-
informal and formal
languages to address
the same or similar
software requirements.
The students are also
required to generalize
the design solutions
so that the solutions
can cope with wider
classes of scenarios of the
same or similar nature.
Apply both informal and
formal techniques to
walk through the design
solutions, or model
a formal idea into an
informal notation, and
vice versa.

2, 3

3 Project Take on the role
of software model
developers to create a
model using advanced
design technique.
Conduct a survey on case
studies about software
design to compare and
contrast how different
design solutions may
solve the same or similar
technical problems, as
well as make critiques
on how to make design
decision based on their
merits and limitations.

1, 2, 3

Assessment Tasks / Activities (ATs)

 ATs CILO No. Weighting (%) Remarks (e.g. Parameter
for GenAI use)

1 Coursework 2, 3 25

2 Project 1, 2, 3 25

Continuous Assessment (%)
50

Examination (%)
50

Examination Duration (Hours)
2

Additional Information for ATs
For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

4 CS4381: Advanced Software Design

Assessment Rubrics (AR)

Assessment Task
Coursework

Criterion
1.1 Ability to explain the methodology and procedure to create software model

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Assessment Task
Coursework

Criterion
1.2 Ability to reason the behaviour of software models

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Assessment Task
Project

Criterion
2.1 Ability to self-directed creation of a software model with behavioural analysis. Capacity for self-directed learning to
compare and contrast software models.

5 CS4381: Advanced Software Design

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Assessment Task
Examination

Criterion
3.1 Ability to explain the methodology and procedure to create software model

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Assessment Task
Examination

Criterion
3.2 Ability to reason the behaviour of software models

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

6 CS4381: Advanced Software Design

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Assessment Task
Examination

Criterion
3.3 Ability to create software models with behavioural analysis.

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Part III Other Information
Keyword Syllabus
Software non-functional requirements, state machine diagram, message sequence chart, concurrency, process algebra,
refinement, advanced design patterns, architectural patterns.
Syllabus
• Software non-functional specification

Attribute-driven design, architecture design and analysis, non-functional requirements
• Semi-formal software modelling

Advanced design patterns for concurrency and resources management, architectural patterns, quality attribute, design
tactics

• Formal software modelling
Process algebra, statecharts, pre-/post-condition, assertion

• Reasoning and development
Usage scenarios, model refinement

Reading List

Compulsory Readings

 Title

1 Nil

7 CS4381: Advanced Software Design

Additional Readings

 Title

1 Schmidt, D., Stal, M., Rohnert, H., and Buschmann, F. (2004). Pattern-Oriented Software Architecture, Volume 2:
Patterns for Concurrent and Networked Objects. Wiley series in software design patterns. Wiley.

2 Kircher, M. and Jain, P. (2004). Pattern-Oriented Software Architecture, Volume 3, Patterns for Resource
Management. Wiley series in software design patterns. Wiley.

3 Buschmann, F., Henney, K., and Schmidt, D. (2007). Pattern-Oriented Software Architecture: A Pattern Language for
Distributed Computing, Volume 4, A Pattern Language for Distributed Computing. Wiley series in software design
patterns. Wiley.

4 Magee, J., and Kramer, J. (2006). Concurrency: State Model and Java Programs. Wiley.

5 Zeller, A. (2009). Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann; 2nd edition.

6 Pierce, B.C. (2002). Types and Programming Languages. MIT Press.

7 Harper, R. (2012). Practical Foundations for Programming Languages. Cambridge University Press.

