CS2116: COMPUTER SYSTEMS

Effective Term Semester A 2022/23

Part I Course Overview

Course Title Computer Systems

Subject Code CS - Computer Science Course Number 2116

Academic Unit Computer Science (CS)

College/School College of Engineering (EG)

Course Duration One Semester

Credit Units

Level B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction English

Medium of Assessment English

Prerequisites

Nil

Precursors

Nil

Equivalent Courses Nil

Exclusive Courses Nil

Part II Course Details

Abstract

This course aims to introduce the logic design techniques in the construction of the functional parts of a CPU and fundamental components and principles of operation of computer systems.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Describe functions of the basic building blocks of a digital system.			Х	
2	Make critique and assessment on various architectures and the design concepts for analyzing computer systems.			x	
3	Explore the basic operations of cache and main memory, I/O operations, bus, interrupt and peripheral devices as well as assessing the performance of different designs.		x		
4	Write low-level programs for bitwise operation, function pointer, call-back function, and event interrupt using C or C++ language.			x	X

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

	TLAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Introduce the logic design techniques in the construction of the functional parts of a CPU and fundamental components and principles of operation of computer systems.	1, 2, 3, 4	3 hours/week
2	Tutorial	Students will be provided with some exercise questions to gain better understanding of the lecture materials. The instructor will explain the questions in detail.	1, 2, 3, 4	8 hours/semester

Teaching and Learning Activities (TLAs)

3	Assignments will be given out during the semester. Assignments will be	1, 2, 3	After class
	focusing on practical questions.		

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)	
1	Assignment	1, 2, 3	10	It includes short factual questions and case studies regarding computer architecture. Quality of assignment Xcorrectness of answers and ability to apply knowledge) will be used to assess CILOs.	
2	Lab Project	4	5	There will be three tutorials devoted to Arduino board experiments where the student need to upload their program to the Arduino board to fulfil some functionality. In total, there are three mini projects to complete.	
3	Exam/quiz	1, 2, 3	15	Final exam and quiz will include questions assessing the students' understanding on architectural aspect of computer.	

Continuous Assessment (%)

30

Examination (%)

70

Examination Duration (Hours)

2

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task Assignment

Criterion ABILITY to SOLVE questions from different basic topics Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D) Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Lab Project

Criterion

ABILITY to write the right code to make the Arduino board work appropriately

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F) Not even reaching marginal levels

Assessment Task

Final Exam/Quiz

Criterion ABILITY to solve problems for different topics under time pressure

Excellent (A+, A, A-) High

Good (B+, B, B-) Significant

Fair (C+, C, C-) Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Number Systems. Logic Gates. Basic combinational circuits. Basic Computer Organization and Architecture. Cache, Main Memory and Flash Memory. Storage Device. Synchronous and Asynchronous Bus, Bus Arbitration. Parallel and Serial Interfaces, PCI Bus. Peripheral Devices. Low-level programming.

Syllabus

- · Number systems
- Number representation. Binary arithmetic. Negative numbers. Floating point numbers and calculations, IEEE floating point.
- Digital logic fundamentals Logic gates. Basic combinational circuits. Examples with applications.
- Basic computer organization
 Functional subsystems: CPU, memory, input/output systems.
- CPU organization and operations Register model. Fetch and execute cycle. Instruction format. Control unit and microprogramming, case study on a typical microprocessor.
- Low-level programming
 Bitwise operator. Function pointer. Call-back function. Event interrupt.
- Memory system
 RAM, ROM. Cache memory. Flash memory.
- Peripherals
 Display technology. Interactive Display. Storage device.
- I/O and bus system
 Basic model of an I/O system. I/O interfaces including serial and parallel. PCI bus.

Reading List

Compulsory Readings

	Title
1	Hamacher, V.C., Vranesic, Z.G. and Zaky, S.G. (2011). Computer Organization and Embedded Systems. McGraw-Hill, 6th edition.
2	Mano, M.M., and Kime, C.R., (2007). Logic and Computer Design Fundamentals, Prentice-Hall, 4th edition.

Additional Readings

	Title
1	Tanenbaum, A. (2005). Structured Computer Organization. Prentice-Hall, 5th edition.
2	Stallings, W. (2009). Computer Organization and Architecture. Prentice-Hall, 8th edition.