City University of Hong Kong Course Syllabus

offered Division of Building Science & Technology with effect from Semester A 2018/19

Part I Course Over	view
Course Title:	Building Services
Course Code:	BST22611
Course Duration:	1 Semester
Credit Units:	3 Credits
Level:	A2 Arts and Humanities
Proposed Area: (for GE courses only)	Study of Societies, Social and Business Organisations Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	NIL
Precursors: (Course Code and Title)	NIL
Equivalent Courses : (Course Code and Title)	BST21611 Building Services
Exclusive Courses: (Course Code and Title)	NIL

1

Part II **Course Details**

1. **Abstract**

(A 150-word description about the course)

This course aims to provide students with knowledge of building services systems in terms of supervision, design and applications in buildings.

Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting* (if applicable)	curricu	ery-eni lum rel	lated
				tick	
			A1	A2	A3
1.	Understand and select common water supply, and above ground drainage systems for buildings.	10%	√		
2.	Evaluate the suitability of heating, ventilation and air-conditioning systems and master energy saving for various building types.	35%	√		
3.	Evaluate and apply fire services systems for various building types.	20%	✓		
4.	Consider common electrical power distribution systems and analyse their application in buildings.	20%	✓		
5.	Describe common vertical transportation systems in buildings.	10%	√		
6.	Realize the necessity of services coordination	5%	✓		
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%			

If weighting is assigned to CILOs, they should add up to 100%.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	CILO No.		Hours/week (if			
		1	2	3	4	5	6	applicable)
Lecture	Lecture is major in-class teaching	✓	✓	✓	✓	✓	✓	3 hr/wk
(Average	and learning activities in which							
class size:	lecturer would explain the							
around 50	selected topics by oral							
Students)	presentation, and would discuss							
	with students through case							
	problems and real-life examples							
Study reports	Case problem for guided		✓		✓		✓	
	self-learning, and reflections of							
	their understanding of the							
	intended subjects. Students are							
	required to submit one group and							
	two individual study reports upon							
	completion of the							
	study/investigation.							
Test	To review students' ability to	✓	✓	✓	✓	✓		
	understand the intended subjects							

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CII	CILO No.					Weighting*	Remarks	
	1	2	3	4	5	6			
Continuous Assessment: 40%									
Study reports	✓	√	✓	√	√	√	30% (10% per report)	A student must obtain a minimum mark of 35 in	
Test	✓	✓	✓	✓	✓		10%	both coursework and	
Examination	√	✓	✓	✓	✓		60%	examination and an overall mark of 40 to pass the course	
Examination: 60% (duration: 2.5 hours)									

^{*} The weightings should add up to 100%.

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Study reports	Capacity for self-directed learning to understand the principles of heating, ventilation, and air-conditioning system; principles of fire protection and plumbing systems; principles of distribution systems and to findings in an organized and systematic manner.	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Test	Capacity to understand and describe basic building services systems and applications	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	Capacity to compare various building services systems and to select appropriate systems for practical applications	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

<u>Water Supply and Drainage Systems</u>: Water supply to high-rise buildings. Cold and hot water systems. Soil waste and vent. Sanitary fittings.

<u>Heating, Ventilating and Air-Conditioning Systems</u>: Ventilation requirements. Mechanical ventilation. Refrigeration. Unitary, split and central air-conditioning systems. Heat pumps. Heat recovery.

<u>Fire Services Systems</u>: Fire protection requirements. Fire extinguishers. Hose reels and fire hydrant system. Sprinkler system. Automatic fire alarm detection system.

<u>Electric Power Supply Systems</u>: Electrical power supply in Hong Kong. Electrical power distribution system requirements in buildings.

<u>Vertical Transportation Systems</u>: Lifts and escalators: construction, building requirements, builder's work. <u>Services coordination</u>: Building's work, site coordination, critical path, means of design and construction coordination

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Stein, B., Reynolds, J.S., McGuinness, W.J. (2005) Mechanical and Electrical Equipment for
	Buildings, Updated version. Hoboken, N.J.: Wiley
2.	Hall, F. (1994) Building Services and Equipment, Volumes 1 to 3. Updated version, Essex:
	Longman
3.	Chadderton, D.V. (2000) Building Services Engineering, Updated version, London, New York:
	E & FN Spon
4.	Greeno, R. (1997) Building Services, Technology and Design, Updated version, Harlow, Essex: Addison
	Wesley Longman

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Code of Practice for Energy Efficiency of Lighting Installations:						
	http://www.emsd.gov.hk/emsd/e_download/pee/lightingcop_2007.pdf						
2.	Code of Practice for Energy Efficiency of Air Conditioning Installations:						
	http://www.emsd.gov.hk/emsd/e_download/pee/accop_2007.pdf						
3.	Code of Practice for Energy Efficiency of Electrical Installations 2007:						
	http://www.emsd.gov.hk/emsd/e_download/pee/eleccop_2007.pdf						
4.	Code of Practice for Energy Efficiency of Lift & Escalator Installations:						
	http://www.emsd.gov.hk/emsd/e_download/pee/lift_esccop_2007.pdf						
5.	Handbook on Plumbing Installation:						
	http://www.wsd.gov.hk/filemanager/en/content_150/HBonPIB.pdf						
6.	Codes of Practice for Minimum Fire Service Installations and Equipment and Inspection,						
	Testing and Maintenance of Installations and Equipment:						
	http://www.hkfsd.gov.hk/home/eng/code.html						