City University of Hong Kong Course Syllabus

offered by College/School/Department of <u>Mathematics</u> with effect from Semester <u>B</u> 20_17_/_18_

Part I Course Over	view
	Calculus and Linear Algebra for Business
Course Title:	
Course Code:	MA1006
Course Duration:	1 semester
Credit Units:	3 CUs
Level:	B1
	Arts and Humanities
Proposed Area: (for GE courses only)	Study of Societies, Social and Business Organisations Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	HKDSE Mathematics Compulsory Part, or equivalent Notes to Students: Students with HKDSE Mathematics Extended Part Module 2 (Levels 3 –5) are suggested not to take this course.
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	Nil
,	MA1200 Calculus and Basic Linear Algebra I MA1201 Calculus and Basic Linear Algebra II
Exclusive Courses: (Course Code and Title)	MA1300 Enhanced Calculus and Linear Algebra I MA1301 Enhanced Calculus and Linear Algebra II

1

Part II **Course Details**

1. **Abstract**

(A 150-word description about the course)

This course is designed for students pursuing studies in business and related fields. It aims to

- develop fluency in the concepts and techniques of calculus and linear algebra, and
- provide students with mathematical training for all further study in business and related fields.

Course Intended Learning Outcomes (CILOs) 2.

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs#	Weighting*		ery-eni	
		(if		ılum rel	
		applicable)		g outco	
			approp	e tick	wnere
			<i>A1</i>	A2	<i>A3</i>
1.	describe properties of functions and manipulate		711	712	713
	expressions involving standard functions and their	17%	✓		
	inverses.				
2.	explain concepts of limit, continuity and	17%			
	differentiability of functions.	1 / 70		√	
3.	perform techniques of integration to evaluate integrals	22%		√	
	of functions.	2270		ľ	
4.	implement techniques of matrix arithmetic and of	22%		✓	./
	solving systems of linear equations	22%		*	•
5.	apply methods of differential and integral calculus and				
	linear algebra to solve optimization problems,		✓		✓
	evaluate present value of income streams, solve	22%			
	input-output models and other applications in business				
	and related fields.				
* If w	eighting is assigned to CILOs, they should add up to 100%.	100%			

^{*} If weighting is assigned to CILOs, they should add up to 100%.

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	O No.		Hours/week (if		
	_	1	2	3	4	5	applicable)
Lectures	Learning through teaching is	✓	✓	✓	✓	✓	39 hours in
	primarily based on lectures.						total
Tutorials		√					2 hours
	Lagurina thuangh totaniala is		✓				2 hours
	Learning through tutorials is			√			3 hours
	primarily based on interactive problem solving allowing				√		3 hours
	instant feedback.						
	mstant recuback.					√	3 hours
Assignments	Learning through take-home	✓	✓	✓	✓	✓	
	assignments helps students						
	implement basic concepts of						
	functions and techniques of						after class
	differential calculus, as well as						arter class
	apply knowledge of which to						
	problems in business and						
	related fields.						
Math Help	Learning activities in Math	√	√	√	√	✓	after-class,
Centre	Help Centre provides students						depending on
	extra assistance in study.						need

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

30% Coursework

70% Examination (Duration: 2 hours, at the end of the semester)

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Tasks/Activities	CILO No.						Weighting*	Remarks
	1	2	3	4	5			
Continuous Assessment: _30	Continuous Assessment: _30%							
Quizzes/Test(s)	√	✓	✓	✓	✓			Questions are
								designed to see how
								well students have
							15 – 30%	learned basic
								mathematical
								methods, techniques
								and applications of

							1100
							differential calculus
							and linear algebra.
							These assessment
							tasks monitor
							students' progress
							and reveal gaps in
							knowledge.
	✓	✓	✓	✓	✓		These are skills based
							assessment to see
							whether students are
							familiar with
Hand in againment(a)						0 150/	essential
Hand-in assignment(s)						0 – 15%	mathematical
							methods, techniques
							and applications of
							differential calculus
							and linear algebra.
Examination: _70% (duration	: 2 hi	rs , if	appl	icabl	e)		Examination
							questions are
							designed to see how
							far students have
							achieved their
							intended learning
							outcomes. Questions
							will primarily be
							skills based to assess
							the extent to which
							students have
							mastered methods of
							the course and
							synthesized
							mathematical
							knowledge in
*Th	000/					1000/	practical applications.
* The weightings should add up to 10	UU%o.					100%	

* The weightings should add up to 100%.

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Quizzes/	1.1 CAPACITY of	High	Significant	Moderate	Basic	Not even reaching
Test(s)	EXPLAIN and					marginal levels
	APPLY concepts and					margmar icveis
	methods of calculus					
	and linear algebra.					
2. Hand-in	2.1 CAPACITY of	High	Significant	Moderate	Basic	Not even reaching
assignment(s)	SELF-DIRECTED	_				marginal levels
	LEARNING to					margmar icvers
	understand the main					
	concepts of calculus					
	and linear algebra and master the					
	mathematical					
	techniques involved.					
3. Examination	3.1 ABILITY to	III: all	Significant	Moderate	Basic	Not arran no achin a
3. Examination	APPLY mathematical	High	Significant	Moderate	Dasic	Not even reaching
	techniques and					marginal levels
	theories to solve					
	problems involving					
	the intended learning					
	outcomes.					
•••						

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- A) Functions, limits, continuity and differentiability
- B) Techniques of differentiation, implicit and parametric differentiation
- C) Applications of differentiation: rates of change, local extrema, optimization problems, Taylor series, l'Hôpital's rule
- D) Definite and indefinite integrals; techniques of integration, integration of rational functions, integration by substitution, integration by parts
- E) Applications of integration: present value, accumulated net profit
- F) Matrices; determinants, systems of linear equations, Gaussian elimination, matrix inverses, Gauss-Jordan elimination
- G) Applications of linear algebra: input-ouput models.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Ron Harshbarger and Jim Reynolds, Mathematical Applications for the Management,
	Life, and Social Sciences, 10 th ed., Cengage Learning, 2012
2.	Laurence Hoffman and Gerald Bradley, Calculus for Business, Economics, and the
	Social and Life Sciences, 11th ed., McGraw-Hill, 2012.
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Nil
2.	
3.	