City University of Hong Kong
Course Syllabus
offered by Department of Computer Science
with effect from Semester A 2015/16

Part I Course Overview

Course Title: Computer Programming

Course Code: CS2311

Course Duration: One semester

Credit Units: 3 credits

Level: B2

Proposed Area: (for GE courses only)

☐ Arts and Humanities
☐ Study of Societies, Social and Business Organisations
☐ Science and Technology

Medium of Instruction: English

Medium of Assessment: English

Prerequisites: (Course Code and Title)

CS1102 Introduction to Computer Studies or
CS1302 Introduction to Computer Programming or equivalent

Precursors: (Course Code and Title)

Nil.

Equivalent Courses: (Course Code and Title)

CS2310 Computer Programming

Exclusive Courses: (Course Code and Title)

CS2313 Computer Programming
CS2360 Java Programming
Part II Course Details

1. **Abstract**

 (A 150-word description about the course)

 This course aims to equip the students with in-depth concepts and techniques of programming using a high-level object-oriented programming language and to develop practical skills in producing quality programs.

2. **Course Intended Learning Outcomes (CILOs)**

 (CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

<table>
<thead>
<tr>
<th>No.</th>
<th>CILOs*</th>
<th>Weighting* (if applicable)</th>
<th>Discovery-enriched curriculum related learning outcomes (please tick where appropriate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Explain the structure of an object-oriented computer program.</td>
<td>10%</td>
<td>✓</td>
</tr>
<tr>
<td>2.</td>
<td>Analyze, test and debug computer programs.</td>
<td>15%</td>
<td>✓</td>
</tr>
<tr>
<td>3.</td>
<td>Solve a task by applying effective programming techniques, which involve advanced skills like using recursion and dynamic data structures.</td>
<td>60%</td>
<td>✓</td>
</tr>
<tr>
<td>4.</td>
<td>Design and construct well-structured programs with good programming practices.</td>
<td>15%</td>
<td>✓</td>
</tr>
</tbody>
</table>

* If weighting is assigned to CILOs, they should add up to 100%.

Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.
3. **Teaching and Learning Activities (TLAs)**
(TLAs designed to facilitate students’ achievement of the CILOs.)

Teaching pattern:
Suggested lecture/tutorial/laboratory mix: 2 hours lecture; 2 hours laboratory

<table>
<thead>
<tr>
<th>TLA</th>
<th>Brief Description</th>
<th>CILO No.</th>
<th>Hours/week (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>Various programming concepts and techniques will be introduced, explained and demonstrated with examples.</td>
<td>✓ ✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Lab</td>
<td>The laboratory sessions are designed to enable the students to put theory into practice and be proficient in a programming language. The laboratory exercises consist of programming tasks and students can try out their programs using a common integrated development environment. Feedback will be given to students on their work.</td>
<td>✓ ✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Assignment</td>
<td>The assignments are more challenging tasks compared with laboratory exercises. The students need to analyze the requirements and design programming solutions by applying and combining various techniques learnt from lectures and laboratory exercises. They are also required to implement their solutions as practical computer programs, and to explain their ideas/algorithms using suitable presentation methods (e.g. a report, flowchart, etc.).</td>
<td>✓ ✓ ✓</td>
<td></td>
</tr>
</tbody>
</table>

4. **Assessment Tasks/Activities (ATs)**
(ATs are designed to assess how well the students achieve the CILOs.)

<table>
<thead>
<tr>
<th>Assessment Tasks/Activities</th>
<th>CILO No.</th>
<th>Weighting*</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Assessment: 40%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiz</td>
<td>✓ ✓ ✓ ✓</td>
<td>20%</td>
<td>Correctly explain the structure of an object-oriented computer program</td>
</tr>
<tr>
<td>Assignment</td>
<td>✓ ✓ ✓ ✓</td>
<td>20%</td>
<td>Select proper test cases to assess the correctness of a program</td>
</tr>
</tbody>
</table>

Examination*: 60% (duration: 2 hours)
*The weightings should add up to 100%.

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.
5. **Assessment Rubrics**
(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Criterion</th>
<th>Excellent (A+, A, A-)</th>
<th>Good (B+, B, B-)</th>
<th>Adequate (C+, C, C-)</th>
<th>Marginal (D)</th>
<th>Failure (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Quiz</td>
<td>ABILITY to explain, analyse and debug the structure of a computer program</td>
<td>High</td>
<td>Significant</td>
<td>Moderate</td>
<td>Basic</td>
<td>Not even reaching marginal levels</td>
</tr>
<tr>
<td>2. Assignment</td>
<td>CAPACITY for applying programming techniques</td>
<td>High</td>
<td>Significant</td>
<td>Moderate</td>
<td>Basic</td>
<td>Not even reaching marginal levels</td>
</tr>
<tr>
<td>3. Examination</td>
<td>CAPACITY for analyzing and writing effective computer programs</td>
<td>High</td>
<td>Significant</td>
<td>Moderate</td>
<td>Basic</td>
<td>Not even reaching marginal levels</td>
</tr>
</tbody>
</table>
Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus
(An indication of the key topics of the course.)

Program design, development of algorithms, programming language, control structures, data types, multidimensional arrays, file I-O, recursion, pointers and dynamic data structures, object-based programming: data abstraction, classes, and the class library; programming style, program testing, exception handling.

Syllabus:

1. Computers and programming
 Hardware/software hierarchy, the computer as a multi-level language machine. The software development process. Program development environments.

2. Programming techniques and the development of algorithms
 Algorithms, programming language, modular decomposition and procedural abstraction, automatic and dynamic variables, parameter-passing by reference and by value for atomic data, objects, and arrays, control structures, iteration, recursion, exception handling.

3. Data structures

4. Program development practice
 Professional programming styles. Program testing. Program documentation.

2. Reading List
2.1 Compulsory Readings
(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

2.2 Additional Readings
(Additional references for students to learn to expand their knowledge about the subject.)