數碼化社會

為日常生活開發數碼化創新，深入了解數碼科技與社會的關係。

尋找人類價值的“真正價值”

隨着信息及通訊科技的進步，數碼化已滲透到人們日常生活的各個方面。我們可以很容易地量化許多不同的東西，但如“愛”、“和平”、“尊嚴”和其他人類價值所產生的抽象東西呢？城大創意媒體學院莫裏教授（Professor Maurice Benyoun）是媒體藝術領域中著名的藝術家、理論家及策展人。他一直致力於“思維空間（香港）——都市化、建築及室內設計的先進性數位設計”項目，旨在透過互動展覽，以不同方式來思考社會、創新及科技願景。

《思維空間（MindSpaces）》是由歐盟資助的大型項目，旨在通過參與式設計改變室內外環境的設計過程，包括對個人反應的多感官測量。該項目由歐洲發起，目前已形成一個由全球12個合作伙伴組成的聯合體，其中包括莫裏教授和城大作為歐盟與香港研究基金局研究及創新合作計劃資助的兩個項目之一。《思維空間（香港）》是一個拓展項目，通過利用相同的技術，如人工智機器學習和圖像接口，創造個人和集體的“思維設計”，從塑造抽象到數字物體和建築。

神經設計與《大腦工廠》

莫裏教授說：“神經設計就是利用大腦來控制形式和形式的不斷變化。”在《思維空間》聯合成員的外支持，以及城大電腦學博士生Colin Blakemore爵士教授和Bruce Ransom教授擔當神經科學顧問的...
支持下，莫奔教授與城大創意大樓實驗學院副教授鄭權博士（Dr. Tobias Klein）及城大互動媒體電算應用中心首席技術官黃庭輝副教授合作，開發了一款擴展空間的“Voyage”機器。

它可以在建築物中建立虛擬實境（VRE）環境，幫助人們了解建築結構，形成未來空間的感性表達。

此外，莫奔教授還與著名的美籍土耳其藝術家Refaik Anadol合作，開創性提出“Voyage”機器的應用。

在區塊鏈上交易人類價值

這些交易會自動生成一系列的“在區塊鍊上交易人類價值”的價值，呈現出一種特殊的“交易時”。莫奔教授表示：“如果為虛擬貨幣付出代價，或者你住在付出代價的 VHVR，那就不一樣了，那就是我們所說的“交易時階”，當VR的價值也能反應出收購者在市場中的價值主次之分。”

莫奔教授亦表示：“在這個市場裡，我們想說明的是，VR的價值不僅能反應出收購者在市場中的價值主次之分。”

莫奔教授與他的團隊致力於將這些技術應用到建築設計中，他們將借助這些建築設計來創造未來的價值，實現人類價值的轉化為貨幣化。
智能多维数据分析助推影像学和医学发展

生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。生物分子相互作用机制是发现疾病病因和开发新药的关键，但目前人们对其尚未完全了解，因此开发多维度数据分析和图像识别的概念和方法有助于推动分子科学和相关领域的进一步发展。
數碼創新不斷重複日常生活的各大領域，其中數字化金融改變了人們的交易和消費方式，以及金融服務提供的模式。對於這點，金融科技與工程聯合實驗室，匯聚頂尖的科研能力和豐富的行業實戰經驗，致力進行前沿研究，特別針對識別和管理金融風險方面，提供解決方案。這個項目，將有助構建一個大中華及以外地區未來金融科技的發展路徑。

貸款定價數據模型

聯合實驗室在商業領域的內控資產的資產定價，金融風險管理及使用者行為分析等領域展開研究，目標是為金融業提供相關的決策解決方案。聯合實驗室特別著重發展全新的數據模型及分析技術，開發金融工程科技，並在大數據的實際應用，以協助基於風險管理的貸款定價。

吳博士曾採用數據、商科和工程的跨學科訓練，並在金融學和管理科學的廣泛領域內，專門從事定量金融及商業分析。他之前主要集中在金融衍生產品的風險管理，以及研究有關產業對市場參與者的影響。

管理零售信貸風險新方法

吳博士與京東金融科技合作的一個項目，是首個針對零售信貸風險的研究，集中探討貸款者的信貸決策出現變化時，預計貸款結案行為會相應出現的差異。

傳統的信貸方法忽略了貸款方的信貸決策與借款方的信貸風險之間的風險效應，以及風險評估可能出現的重大偏差。為解決這些問題，研究團隊提出新的信貸方法，例如由大數據技術開始，透過新方法將聯通科技集團搭建在市場上的零售信貸風險，有機會風險與傳統信用風險面對的信用風險有著不同的區別。

了解消費者的信貸風險

吳博士曾參與京東數科的信贷風險管理的一項研究，就是運用團隊開發的工具與技術收集參數、評估和監測消費者的信貸風險。當電子商務平台提供無抵押貸款給消費者時，聯通科技集團的整體決策系統會將消費者的貸識到貸款結案，以及風險評估可能出現的偏差。
解讀新媒體時代的政治極化

民眾分布種系著社會偏好，人們在日常生活中做出的許多決定都基於他們對媒體的看法，而政治決定也受媒體影響。隨著數字和社交媒體成為人們日常信息獲取和人際交流不可或缺的一部分，數字技術的發展進一步改變了公民政治表達的方式，也在改變政治的議事方式。專注於研究新媒體對社會及政治影響的歐洲媒體與傳播學者沈裕仁博士，通過大數據及文本分析技術，嘗試閱讀我們的新政治運動。

審慎討論試點實驗

很多論證表明，當缺乏有效溝通和討論時，很容易導致極端思維和負面情緒滋長，為此中華文化藝術研究會主委黃守仁與台大教授黃守仁合作，通過實驗，試圖減少香港政治兩極化。沈博士興起了一個實驗，觀察審慎討論和隨意討論的影響。

審慎討論試點實驗

在實驗中，參與者接受了一個香港基本法第23條的討論，並接受審慎討論和隨意討論的影響，審慎討論組成員有一組訓練生手，並且要維持討論者必須鱗理遵守討論規則，而隨意討論組則沒有這一位要求。在實驗後，參與者被問到他們的討論記憶呈現給另外兩位參與者，以此來測試審慎討論的實驗結果。

i) 在減少政治兩極化方面，審慎討論的實驗效果有顯著，雖然人們對問題的態度以及兩極化的影響都有所減少，但人們開始獲得相反意見，陰影的極化分化也稍微減少了。

ii) 在測試後，人們的知識水平有提升，但學習成效有顯著提高，對公共政策有更深的了解。

輿情大數據分析

香港的議題不在於分段的異化，而是在於不同政治的討論者在審慎討論和隨意討論的實驗中，審慎討論者有較高的討論質量和更深度的討論。

沈博士表示：“香港的問題不在於政治的意識形態差異，而在於不同政治的討論者在審慎討論和隨意討論的實驗中，審慎討論者有較高的討論質量和更深度的討論。”

重大獲獎

2010年Facebook研究獎

2016年度，獲得香港學術優秀研究發展中心研究發展獎

2015年度，中山大學媒體與傳播研究中心研究發展獎

2013-2016年度，香港大學優秀研究發展基金—克漢及吳華與社會科學發展基金

2014年度香港研究發展基金

由沈博士及其團隊發起的“香港網絡民意數據挖掘計劃”（http://www.webopinion.hk）

出版物選輯
