[   ] 

Prof. Tao LUO (羅濤教授)

Ph. D (Chinese Academy of Sciences)

Professor

Contact Information

Office: Y5104 Yueng (Academic 1 )
Phone: +852 3442-8662
Fax: +852 3442-0250
Email: taoluo@cityu.edu.hk
Professor Luo received his PhD from Chinese Academy of Sciences in 1995. He held a professorship at Georgetown University before joining the City University of Hong Kong. His research interest is mainly in nonlinear partial differential equations and analysis including: Mathematical Analysis of PDEs of Fluid Dynamics, Fluids Free Boundary Problems, Hyperbolic Conservation Laws, Calculus of Variations and etc.


Publications


Journal

  • Liu, Hairong. , Luo, Tao. & Zhong, Hua. (2022). Global solutions to an initial boundary problem for the compressible 3D MHD equations with Navier-slip and perfectly conducting boundary conditions in exterior domains. Nonlinearity. 6156 - 6203.
  • Hao, Chengchun. & Luo, Tao. (2022). Some results on free boundary problems of incompressible ideal magnetohydrodynamics equations. Electronic Research Archive. 30/2. 404 - 424. doi:10.3934/era.2022021
  • Huang, Yongting. & Luo, Tao. (2021). Compressible viscous heat-conducting surface wave without surface tension. J. Math. Phys. 62/6.
  • Luo, Tao. & Zeng, Huihui. (2021). On the free surface motion of highly subsonic heat-conducting inviscid flows. Arch. Ration. Mech. Anal. 240/2. 877 - 926.
  • Hao, Chengchun. & Luo, Tao. (2021). Well-posedness for the linearized free boundary problem of incompressible ideal magnetohydrodynamics equations. J. Diff. Eqns.
  • Liu, Hairong. , Luo, Tao. & Zhong, Hua. (2020). Global solutions to compressible Navier-Stokes-Poisson and Euler-Poisson equations of plasma on exterior domains. J. Differential Equations. 269/11. 9936 - 10001.
  • Hao, Chengchun. & Luo, Tao. (2020). Ill-posedness of free boundary problem of the incompressible ideal MHD,. Communications in Mathematical Physics. 376/1. 941 - 963. doi:10.1007/s00220-019-03614-1
  • Luo, Tao. & Wang, Yanlin. (2020). Nonlinear Asymptotic stability of traveling waves of system for gas dynamics in thermal nonequilibrium. J. Dynam. Differential Equations.
  • Luo, Tao. & Wang, Yanlin. (2020). Uniform regularity and relaxation limit for the outer pressure problem of gas dynamics with several thermal nonequilibrium modes. J. Differential Equations.
  • Huang, Yongting. & Luo, Tao. (2019). Global solution of 3D irrotational flow for gas dynamics in thermal nonequilibrium. Ann. I. H. Poincar\'{e}-AN.
  • Luo, Tao. , Wang, Shu. & Wang, Yanlin. (2019). Initial layer and incompressible limit for Euler-Poisson equation in nonthermal plasma. Math. Models Methods Appl. Sci. 29 (2019). Math. Models Methods Appl. Sci. .
  • Luo, Tao. & Zhong, Hua. (2019). Linearized asymptotic stability of rarefaction waves for gas dynamics in thermal and life span of solutions. Comm. Math.Sci. .
  • Chang, Der-Chen. , Luo, Tao. & Zhong, Hua. (2019). On an initial boundary value problem for gas dynamics in thermal nonequilibrium. J. Math. Phys.
  • Luo, Tao. (2019). Some results on Newtonian gaseous stars—existence and stability. Acta Math. Appl. Sin. Engl. Ser. .
  • Hong, Guangyi. , Luo, Tao. & Zhu, Changjiang. (2018). Global solutions to physical vacuum problem of non-isentropic viscous gaseous stars and nonlinear asymptotic stability of stationary solutions. J. Diff. Eqns.
  • Chang, Der-Chen. & Luo, Tao. (2018). Global solution to initial boundary value problem for gas dynamics in thermal nonequilibrium. J. Diff. Eqns.
  • Luo, Tao. & Zeng, Huihui. (2016). Global Existence of Smooth Solutions and Convergence to Barenblatt Solutions for the Physical Vacuum Free Boundary Problem of Compressible Euler Equations with Damping. Comm. Pure Appl. Math. 1354 - 1396. doi:10.1002/cpa.21562
  • Luo, Tao. , Xin, Zhouping. & Zeng, Huihui. (2016). Nonlinear Asymptotic Stability of the Lane-Emden Solutions for the Viscous Gaseous Star Problem with Degenerate Density Dependent Viscosities. Comm. Math. Phys. 347/3. 657 - 702.
  • Luo, Tao. , Xin, Zhouping. & Zeng, Huihui. (2016). On Nonlinear Asymptotic Stability of The Lane-Emden Solutions for The Viscous Gaseous Star Problem. Advance in Mathematics. 291. 90 - 182. doi:10.1016/j.aim.2015.12.022
  • Federbush, Paul. , Luo, Tao. & Smoller, Joel. (2015). Existence of Magnetic Compressible Fluid Stars. Arch. Ration. Mech. Anal. 215/2. 611 - 631.
  • Hao, Chengchun. & Luo, Tao. (2014). Free Boundary Problem of Incompressible Inviscid Magnetohydrodynamic Flows. Arch. Ration. Mech. & Anal. .
  • Luo, Tao. , XIn, Zhouping. & Zeng, Huihui. (2014). Well-Posedness for the Motion of Physical Vacuum of the Three-dimensional Compressible Euler Equations with or without Self-Gravitation. Arch. Ration. Mech. Anal. 213/2. 763 - 831.
  • Colombini, F. , Luo, T. & Rauch, J. (2011). $ C^1$ Measure Respecting Maps Preserve BV Iff they have Bounded Derivative. Methods and Applications of Analysis.
  • Luo, Tao. & Smoller, Joel. (2009). Existence and Nonlinear Stability of Rotating Star Solutions of the Compressible Euler- Poisson Equations. Arch. Ration. Mech. & Anal. 191/3. 447 - 496.
  • Luo, Tao. (2008). Layer Dynamics and Phase Transition for Nonlinear Thermoviscoelasticity, {\it Applicable Analysis. Applicable Analysis.
  • Luo, Tao. & Smoller, Joel. (2008). Nonlinear Dynamical Stability of Newtonian Rotating and Non-rotating White Dwarfs and Rotating Supermassive Stars. Commun. Math. Physics. 425 - 457.
  • Fan, Haitao. & Luo, Tao. (2005). Convergence to equilibrium rarefaction waves for discontinuous solutions of shallow water wave equations with relaxation. Quart. Appl. Math.
  • Luo, Tao. & Yang, Tong. (2004). Global structure and asymptotic behavior of weak solutions to flood wave equations. J. Diff. Eqns.
  • Colombini, F. , Luo, T. & Rauch, J. (2004). Nearly Lipshitzean Divergence Free Transport Propagates Neither Continuity Nor BV Regularity. Commun. Math. Sci. .
  • Luo, Tao. & Smoller, Joel. (2004). Rotating fluids with self-gravitation in bounded domains. Arch. Ration. Mech. & Anal.
  • Colombini, F. , Luo, T. & Rauch, J. (2003). Uniqueness and Nonuniqueness for Nonsmooth Divergence Free Transport,. Seminaire Equations aux Derivees Partielles, Ecole Polytechnique.
  • Luo, T. , Natalini, R. & Yang, T. (2000). Global BV solutions to a p-system with relaxation. J. Differential Equations.
  • Luo, T. & Yang, T. (2000). Interaction of elementary waves for compressible Euler equations with frictional damping. J. Differential Equations.
  • Luo, T. , Xin, Z. & Yang, T. (2000). Interface behavior of compressible Navier-Stokes equations with vacuum. SIAM, J. Math. Anal. .
  • Hsiao, L. , Luo, T. & Yang, T. (1998). Global BV solutions of compressible Euler equations with spherical symmetry and damping. J. Diff. Eqns.
  • Luo, Tao. & Natalini, Roberto. (1998). BV solutions and relaxation limit for a model in viscoelasticity. Proc. Roy. Soc. Edinburgh Sect. A.
  • Hsiao, L. & Luo, T. (1998). Nonlinear diffusive phenomena of entropy weak solutions for a system of quasilinear hyperbolic conservation laws with damping. Quart. Appl. Math. .
  • Luo, Tao. (1997). Asymptotic stability of planar rarefaction waves for the relaxation approximation of conservation laws in several dimensions. J. Diff. Eqns.
  • Hsiao, L. & Luo, T. (1996). Large-time behaviour of solutions for the outer pressure problem of a viscous heat- conductive one-dimensional real gas. Proc. Roy. Soc. Edinburgh Sect. A.
  • Hsiao, L. & Luo, T. (1996). Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media. J. Differential Equations. J. Diff. Eqns. .
  • Luo, T. & Xiao, L. (1993). Large time behavior of the solutions of nonlinear degenerate diffusion equations. Acta Math. Sci. (English Ed.).

Conference Paper

  • Luo, Tao. & Zeng, Huihui. (2020). Some results on fluid free boundary problems. Proceedings of the International Consortium of Chinese Mathematicians 2017.

Book Chapter

  • Luo, T. & Smoller, J. (2012). Stellar Structure, Dynamics and Stability. Hyperbolic problems & theory, numerics and applications Ser. Contemp. Appl. Math. .


Last update date : 02 May 2025