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We consider here the “generalized von Kérmén equations”, which constitute a mathe-
matical model for a nonlinearly elastic plate subjected to boundary conditions “of von
Karman type” only on a portion of its lateral face, the remaining portion being free.
As already shown elsewhere, solving these equations amounts to solving a “cubic” op-
erator equation, which generalizes an equation introduced by M. S. Berger and P. Fife.
Two noticeable features of this equation, which are not encountered in the “classical”
von Kirmén equations are the lack of strict positivity of its cubic part and the lack of
an associated functional. We establish here the convergence of a conforming finite ele-
ment approximation to these equations. The proof relies in particular on a compactness
method due to J.L. Lions and on Brouwer’s fixed point theorem. This convergence proof
provides in addition an existence proof for the original problem.
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1. Introduction

Using the method of formal asymptotic expansions with the thickness as the “small”
parameter, Ciarlet® has shown that the classical two-dimensional von Kdrmdn equa-
tions correspond to a specific class of three-dimensional boundary conditions, hence-
forth called “of von Kdrmdn type”: The applied surface forces along the lateral face
of the plate should be such that only their resultant after integration across the
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thickness is known and this resultant should be in the plane containing the middle
surface of the plate. As a consequence, the transverse segments along the lateral
face can undergo only translations, ¢ priori of unknown magnitude, in the plane
spanned by the middle surface.

In ibid., it was shown in particular that the classical von Kérmsn equations are
obtained only if such boundary conditions of von Kérmén type hold over the entire
lateral face of the plate.

More recently, Ciarlet and Gratie” considered nonlinearly elastic plates where
such boundary conditions of von Kérmén type hold only on a portion of the lat-
eral face, the remaining portion being subjected to boundary conditions of free
edge. They then showed that a formal asymptotic analysis of the three-dimensional
equations leads in this case to “generalized von Kdrmdn equations”, ie., a two-
dimensional boundary value problem that contains the classical von Kérmén equa-~
tions as a special case. That this generalization is possible hinges on the somewhat
unexpected result that the boundary conditions for the Airy function can still be
determined on the entire boundary solely from the given data.

The generalized von Kérmén equations found in this fashion can then be studied
on their own from the mathematical and numerical viewpoints, i.e., as regards
the existence, uniqueness or non uniqueness, of their solutions and the conception
of efficient numerical schemes for their approximation. In this fashion, physical
situations of outstanding practical interest, such as the buckling of a rectangular
plate subjected to compressive forces on opposite edges, is put on a sound basis, as
regards their mathematical modeling, the study of the buckling phenomena, their
numerical simulation, etc.

The main objective of the present paper, whose content is described below, is to
establish the convergence of a conforming finite element scheme for approximating
solutions to the generalized von Kérmén equations. It thus serves as a natural
complement to Ciarlet, Gratie and Sabul®, where the ezistence of such solutions
was established.

To begin with, we briefly review in Sec. 2 the genesis and various mathematical
features of the generalized von Kérmén equations, before describing in Sec. 3 a
natural finite element method for approximating these equations. In particular, we
recall in Theorem 2.1 why solving these equations amounts to finding a solution
€ € V(w) to a “cubic” operator equation of the form

C(&) +€- B(x,6) - F=01in V(w),
where
V(w):={n€ H*w); n=08,1=0 on m}.

Here, w is a bounded open subset of R? with a Lipschitz-continuous boundary ~,
the set & representing the middle surface of the plate, and v, is a portion of ¥
satisfying 0 < lengthy; < lengthy. The nonlinearity in this equation lies in the
operator C : V(w) — V(w), which is “cubic”, in the sense that C(an) = o3C(n)
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for all @ € R and € V(w). Otherwise, B : H?(w) x H3(w) — V(w) is a bilinear
mapping and x € H*(w) and F € V(w) are given functions. The classical von
Kdarman equations correspond to the case where v; =

The above cubic operator equation generalizes an operator equation originally
introduced by Berger® and Berger and Fife® in the case where 7, =y and F = 0,
and also used by Naumann® when v; = @ and x = 0. However, this equation
now displays two features that were not encountered in these special cases or in the
classical von Kérmén equations. First, its leading term “loses its strict positivity”, in
the sense that, for an ad hoc inner-product ((-, )) on the space V(w), the inequality
((C(n),m)) > 0 holds for all n € V(w), but ((C(n),n)) = 0 no longer necessarily
implies that 5 = 0. Second, the bilinear form

(&m) € V() x V(w) = ((B(x,€), m)

is no longer necessarily symmetric, a property that prevents solving the operator
equation by way of finding the stationary points of an associated functional.

These two reasons, which are discussed with more details in Sec. 5, basically
preclude the usage of those techniques that were successfully employed for solving
the operator equation corresponding to the classical von Kérman equations, such as
the minimization of an associated functional as in Sec. 2.2 of Ciarlet and Rabier!! or
in Theorem 5.8-3 of Ciarlet®, or the topological degree as in Goeleven, Nguyen and
Théra4, or the recourse to pseudo-monotone operators as in Gratiel®. The same
reasons also preclude the usage of finite element methods proposed by Kesavan!®.

To overcome these difficulties, we make instead an essential use of a crucial com-
pactness method due to J. L. Lions!®, which itself relies on Brouwer’s fized point
theorem. More specifically, we establish in Sec. 4 (see Theorem 4.1) the convergence
of the finite element solutions by combining J. L. Lions’ method with various func-
tional analytic tools and specxﬁc properties of the discrete mappings approximating
the “continuous” mappings ¢ and B. Note that, interestingly, our convergence
proof also provides as a by-product another proof of the ezistence of solutions to
the operator equations.

The results of the present paper were announced in Ref. 9.

2. The generalized von Kdrmén equations

Greek indices, corresponding to the coordinates in the “horizontal” plane, vary
in {1,2} and Latin indices vary in {1,2,3}, except if they are used for indexing
sequences. The summation convention with respect to repeated indices is system-
atically used.

Let there be given a bounded, connected, simply-connected, open subset w of
the “horizontal” plane R? with a sufficiently smooth boundary v, the set w being
locally on a single side of v. Without loss of generality, it is assumed that the origin
of R? belongs to «. Let v; and 2 be two disjoint relatively open subsets of v such
that length v1 > 0, length v > 0, and length (v — {11U"2}) = 0. Let y = (ya)
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denote a generic point in @, and let 8, = 8/dy, and Oap = 0? /0Ya0ys. Let (vq)
denote the unit outer normal vector along 7, let (Ta) denote the unit tangent vector
along «y defined by 7, = —vy, 75 = 14, and finally, let 9, = 1,8, and 8, = 7,8,
denote the outer normal and tangential derivative operators along +.

Consider a nonlinearly elastic plate, with middle surface & and thickness 2e,
whose constituting material is homogeneous and 1sotropic, and whose reference con-
figuration @x [—¢, €] is a natural state. The behavior of this material is thus governed
by its two Lamé constants A > 0 and u > 0.

The plate is subjected to vertical body forces with density (0,0, f3) in its interior
w X |—¢, €[ and to vertical surface forces with density (0,0, g3) on its upper and lower
faces w x {+¢} and w x {~¢}, where f3 € L*(w x |~¢,€[) and g3 € L2(w x {—¢,€}).
On the portion v; X [—¢,¢€] of its lateral face, the plate is subjected to horizontal
forces “of von Kdrmdn’s type”, of the form introduced by Ciarlet?; this means that
only the density (ko), where ko € L%(71), of their resultant after integration across
the thickness of the plate is known along v; and that, accordingly, the admissible
displacements along 7; x [—¢, €| are those whose horizontal components are inde-
pendent of the vertical variable and whose vertical component vanishes. Finally, the
plate is subjected to a boundary condition of free edge on the remaining portion
Y2 X [—&, €] of its lateral face.

As shown in Ciarlet and Gratie”, the leading term of a formal asymptotic
expansion of the three-dimensional displacement field inside the plate, with the
thickness as the “small” parameter, can be fully computed from the solution of a
two-dimensional “displacement” boundary value problem posed over w, i.e., whose
unknowns are the three components of the “limit” displacement field of the middle
surface @ (it is likely that the “gamma-convergence approach” successfully used by
Friesecke, James and Miiller'®!3, for modeling the two-dimensional equations of
a clamped plate, would likewise fully justify this two-dimensional boundary value
problem, although this assertion is yet to be rigorously substantiated).

The main result in Ref. 7 then consisted in showing that, under the assumptions
that the set w is simply connected and that its boundary + is smooth enough, there
is a one-to-one correspondence between the smooth solutions of this boundary value
problem and those of another boundary value problem, which takes the form of the

following generalized von Kdrmdn equations:
—Oapmap(V3€) = [¢, ] + f inw,
A% =—[¢, ¢ inw,
E=0,6=0 onm,
maﬁ(vzf)l’al/ﬁ =0 on",,
Bamap(V3E)vp + 0r(Map(VZE)Vats) =0 on s,
¢=¢oand 5,6 = ¢; on~.

The two unknowns& : @ — R and ¢ : @ — R and the various notations appearing
in these equations have the following significance: The function E-Y/2¢ : @ — R
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is the vertical component of the displacement field of the middle surface @ of the
plate, the constant E = pu(3A + 2u)/(A + p) standing for the Young modulus of
its constituting material. The function £72¢ : @ — R is the Airy function, from
which the horizontal components of the displacement can be in.turn determined

(see ibid.). The Monge-Ampére form [-, ] is defined for smooth enough functions
¢:0—Rand £: 5 — R by

(6,€] = 01100026 + B23¢011€ — 281248;5¢.
The given function f € L*(w) is defined by (x5 designates the vertical variable)

&
f = E4E—1/2 { f3d.’173 + 93(»,5) + 93('7 _E) } .
ft 4
The functions mqag(V2¢) are defined as

1 4
maﬂ(vzg) = —=Qapor0s-€, Where QuBor = _—'-l“"aaﬁ‘sar'*‘zﬂ(éaa(sﬂr +6a-réﬁor)-
3 A+2p
This means that the functions £*E~1/2m,s3(V2¢) represent the bending moments
inside the plate. Finally, the functions ¢o € H3/2(y) and ¢, € HY/ 2(v) are defined
in terms of the given functions k4 € L*(v;) by

$o(y) = -1 [ ko(z)dy(z) + ys (f ) ki (z)dv(z) + [ (€1ka(z) — T2k1 (2))dv(x),

¥y . y . 1(v)
1Y) = -n®) [ k(z)dv(z) +a(y) [ ki(z)dy(z),
(v) 7(v)
where v(y) designates the oriented arc from 0 € v to y € v and the functions
ke € L%(vy) are defined by ko = kg on 71 and ko = 0 on 72 (in these integrals,
T = (1,Z2) € v is the integration variable). Naturally, we need to assume that the
functions kq € L2(v) satisfy the compatibility relations

/701d’v = /Ezdﬁf = /(1’1792 — Toky)dy = 0.
Y v v

For, as is easily verified (see, e.g., the proof of Theorem 5.6-1 in Ref. 6), these
compatibility relations guarantee that the functions ¢o and ¢; are indeed well-
defined as functions in the spaces H32(y) and H/2(y), respectively. The simple-
connectedness of w is also used here.

Note that these “generalized” von Kérman equations indeed generalize the “clas-
sical” von Kdrmdn equations that correspond to the case where Y1 == 7. Detailed
treatments of these classical equations are found in Ref. 6 and Ref. 11.

Once the generalized von Kérmén equations are derived under the key assump-
tion that w is simply-connected and « is smooth and that their solutions (&, ¢) are
smooth, they can be studied for their own sake, in particular regarding the exis-
tence of less smooth solutions when the set w is not necessarily simply-connected,

and when the boundary v is only Lipschitz-continuous in the sense of Negas?! or
Adams?.
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One can establish the following existence theorem (see Ciarlet, Gratie and
Sabu'?):

Theorem 2.1. Let w be a bounded, connected, open subset of R? with a Lipschitz-
continuous boundary v, and let f € L*(w) and (¢o, ¢1) € H¥?(y) x HY2(y) be

given functions. Then, if the norm ||(do, 1]l H3/2(y)x H/2(y) 18 small enough, the
generalized von Kdrmdn equations have at least one weak solution (£, ¢) € H?(w) x
H*(w).

Elements from the proof. We only recapitulate here those parts of the existence
proof from Ref. 10 that will be needed in the sequel; for the other parts of this
proof, see ibid.

(1) Define the bilinear mapping:
B: H*(w) x H*(w) — H}(w)

as follows: Given (€,7) € H?*(w) x H?(w), the function B(¢,n) € HZ(w) is the
unique solution of the variational equations (note that [¢,7] € L*(w), so that their
right-hand side makes sense):

/ AB(¢, n)Abdw = / [€,7)0dw for all 6 € H2(w).

(ii) Define another bilinear mapping
B: H*w) x H(w) - V(w) = {n € H*w); n=8,m=0 on m}
as follows: Given (¢, £) € H*(w) x H*(w), the function B(¢,£) € V(w) is the unique

solution of the variational equations:

(B(#,6),m) = / [6,€]ndw for all n € V(w),

w

where the inner-product ((-,-)) is defined by

1
(€)= 5 [ GaerOorCOoand.

w

Note that the norm ||-|| associated with the inner product ((-,-)) is equivalent to
the norm ||| ya(,, over the space V(w).
(iii) Let x € H?(w) be the unique solution of the variational equations

/AxAOdw =0 for all § € HZ(w)

that also satisfies x = ¢¢ and 3, x = ¢; on 7.
(iv) Finally, let F € V(w) denote the unique solution of the variational equations

(F.m) = % / frdw for all n € V(w).
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(v) Then finding a weak solution (€, ¢) of the generalized von Kdrmdn equations
amounts to finding § € V(w) that satisfies the operator equation:

CE) +&-B(x.§) - F=0 in V(w),
where the nonlinear mapping
C: V(W) - V(w)
is defined by
C(n) = B(B(n,m),n), foralln e V(w),
the unknown ¢ € H?(w) being then given by
¢ =x — B(£,¢).

0
Naturally, finding the solution £ of the above operator equation is equivalent to

solving the following variational problem: Find ¢ such that
(P)  §eV(w)and (C)+&~B(x,€) - Fym) =0 forall n € V(w).

Note that the nonlinear mapping € is “cubic”, in the sense that € (an) = 38 (n)
for all @ € R and 77 € V(w).

3. The discrete problem

In order to avoid technicalities due to possibly curved portions of the boundary -+,
we henceforth assume that « is a polygon, so that & can be exactly covered by a
regular family of triangulations. Let

Wy € H*(w), Vi C V(w), Vor C HZ(w)

be standard conforming finite element spaces associated with such a family, i.e., that
satisfy the minimal conditions of Theorem 6.1-7 in Ref. 4. As usual, the parameter
h denotes the greatest diameter of all the finite elements found in a given triangu-
lation. For each h > 0, the discrete problem is then defined through the following
stages, which simply mimic those that lead to the operator equation satisfied by
€ € V(w) (see parts (i) to (v) in the “elements of the proof’ of Theorem 2.1):

(i) Define the bilinear mapping

By : H2(w) X Hz(w) — Vo

as follows: Given (€,7) € H?(w) X H?(w), the function B (£,7) € Vo is the unique
solution of the variational equations:

/ABh(E, ) A0, dw =/[£,n] Opdw for all 8 € Vyp,.

Hence, for (§,7) € H*(w) x H?(w) fized,
”Bh(fxﬂ) - B(€> 77)”};2(”) —0as h— 0.
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(ii) Define another bilinear mapping:
By, : H(w) x H3(w) — Vj,
as follows: Given (4,£) € H?(w) x H%(w), the function By(¢,¢) € Vj, is the unique

solution of the variational equations

((Ba(#,6),mn)) = /[45, €] nrdw for all my, € V.

w

Hence, for (¢,£) € H*(w) x H%(w) fized,
866 - B9, —0ssh—0.

(iii) Let x» € W} be a standard finite element approximation of x € H 2(w),
which therefore satisfies ||x» — x|| H2(w) — 0ash—0.

(iv) Finally, let Fy € V;, be the unique solution of the variational equations

(s 1)) = [ s for all m € Vi)

which therefore satisfies
|1 Fr — Fll ga¢,) — 0as h— 0.
(v) Then the discrete problem consists in finding (£, dn) € Vi X W, in two
stages: First, {n € V4, is found by solving the discrete operator equation:
Cn(€n) +&n — Bu(xn, &) — Fa =0 in Vi,
where the discrete “cubic” mapping Cj, : Vi, — V, is defined by
Ch(nn) := Bu(Bn(mn,mn), ) for all n, € V.

Note that finding &, is clearly equivalent to solving the following discrete varia-
tional problem (which is shown to have at least one solution in Theorem 4.1 below):
Find &, such that

(Pr) €k € Vi and ((Cu(én) + & — Br(xn: &r) — Fh,mn)) = 0 for all ny, € Vi
Second, ¢, € Wy, is given by

&n = Xn — Br(&n, &n)-

4. Convergence

The following theorem establishes the convergence of the finite element method de-
scribed in Sec. 3. Interestingly, the same theorem automatically provides in addition
the ezistence of a weak solution to the generalized von Kérman equations (which
otherwise can be established by a direct proof; see Ref. 10). Strong and weak con-

vergences are denoted — and — respectively. All convergences are meant to hold
as h approaches zero.
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Theorem 4.1. Assume that the norm ||(¢o, ¢1)|| H3/2(y)x H1/2(y) 18 small enough.
Then there ezists a constant M such that, for each h > 0, the discrete variational
problem (Py) (cf. Sec. 2) has at least one solution &, € V;, that satisfies [lErll < M.
Let (§n)n>0 be any subsequence that weakly converges in H?(w) and let the associated
subsequence (¢n)n>o0 be defined by ¢, = xn — Br(€n,€r). Then

(€rs 8n) = (€,¢) in H?(w) x H?(w),

where (€, $) is a weak solution of the generalized von Kdrmdn equations.

Proof.

For clarity, the proof is broken into several parts, numbered (i) to (viii). We
begin by a property of the Monge-Ampére form that will be crucially needed in
parts (ii) and (jii). Although its proof is known (see, e.g., Theorem 5.8-2 in Ref. 6),
it is nevertheless reproduced here for the sake of completeness.

In what follows, ci,cz, etc., designate various strictly positive constants that
may depend on w, but are otherwise independent of A.
(i) The trilinear form

T (6,m,%) € HA(w) x H2(w) x H*(w) — / (€, 7] xdw

is continuous, i.e,

<¢ ”f”zp(w) Il g2 H a2 0y

/[&n] xdw

w

for all (§,m,x) € H*(w) x H*(w) x H*(w). Moreover, T becomes a symmetric form
if at least one of its three arguments is in HZ(w).
We clearly have

/[é,n}xdw

w

< ”[f: n}]‘L‘(w) ”XHCD(EJ) .

Hence the continuity of the trilinear form T follows from the definition of [¢,m] and
from the continuous imbedding of the space H?(w) into the space C%(@). Let the
functions £, 7, and x be in C*°(®); we may then write

/ [€, ] xdw = / (x011£0221 ~ Xx0126012m)dw + / (x02260111 — X012€D121)dw

w

= /32()(3115327]*—)(3125317))4‘0* fazﬂaz(xauf)dw+/317732(X312€)dw

+ / 01(x022601n — x012£02m)dw — / 01101 (x0228)dw + / 02m01 (x012€)dw.
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If at least one of the three functions &, 7, and ¥, is in D(w), the integrals [ d4(...)dw
vanish and we are left with “

f €, 7 xdw = / Bt (BunBax + amdrx)dw — / (B1168mBrx + Brab 1By x)dov.

w

Since C°(@) = H*(w) and D(w) = HZ(w), and since both sides are continuous
trilinear forms with respect to ||-|| gr2(,, (recall that the space H 2(w) is also contin-
uously imbedded in the space W 4(w)), this relation remains valid if the functions
&,n, and x belong to H2(w), one of them being in H3(w); hence the trilinear form
becomes symmetric in this case: The left-hand side is unaltered if £ and 7 are
exchanged and likewise, the right-hand side is unaltered if 77 and x are exchanged.

(ii) The discrete cubic mapping Cy, : Vi, — Vj, satisfies

((Ch(nm),mm)) 2 0 for all ny € Vi
To seekthis, let 7, be any function in the space Vj,. Then, by definition of the
mapping B,

((Cr(mn),mm)) = ((Bw(Br(mh. )y mk)s 1)) = /[Bh(nh,nh)»nh] Nhdw.

[

But, since By (nh,mn) € Von C HZ(w), we may also write

/{Bh(ﬂh,m)mh] ﬂhdw=/[?7h,?7h] By (nn, np)dw = /%ABh(‘nh,ﬂh)lzdw

w

by definition of the mapping Bj, thus establishing the announced inequality.
(iii) Let xn € Wh,& € Wh, and np € Wy, be such that

Xn — X in H*(w), & — € in H*(w), ny — 1 in H*(w).
Then

((Br(xn, €n)ymn)) = ((B(x,€),m))-
By definition of the mappings By, and B, we have

((BaCam €8),70)) = (B €),m)) = f s Enlndo — / b€

/[xh—x,fhnhdcu+/{x,£h 1om =1 dw+/[x & — Elnd.

w

Let us examine each term separately. Since a weakly convergent sequence in H2(w)
is bounded and the injection of H2(w) into C°(@) is compact, the inequalities

[ = x€almds < exllxn = Xlzagor Wl Il

w
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and

/ B, nl (= M < 10 Enlll s 18 = lleogay

<ec “X“Hﬂ(w) ”fh”yz(w) N7 — "7“c0(a) :

imply that the first and second terms approach zero as h — 0 (recall that x, — x
in H?(w) by assumption). Since the functions 7dasx belong to L?(w) and since
Oyr&n = Oyr€ in L*(w), the relation

/ X, €n — €] ndw = / {n011x022€n + NOa2X011€n — 21012X 0126 }dw — / [x; €] ndw

w

implies that the third term likewise approaches zero as h — 0.
(ii) Let &, € W), be such that

& — ¢ in H*(w).
Then
Bh(n,€n) — B(€,€) in H(w).
Let Cn 1= Ba(€n,&n) — Br(€,&n) and ¥n := Ba(§,€n) — Br(£,£), so that
1B (€n, €n) — B(& Ol mragy < IChll g2y + 1¥nll 2oy -

The symmetry property established in (i), the inclusion Vor, C HZ(w), and the
definition of the mapping B, together imply that

/ AChAGpdw = / [En — £, €] Ondw = / B €] (6 — €)dw

for all 8, € V. Letting 05 = ¢, in these equations thus gives

2
I¢alEr2) < €3 llACGITa0) < cs ¢k €nlll 2 iy 1€8 = Ell )
< €263 [IChll gy 1€a 1 g2y I1€R — Ell ey () -
Hence (5 — 0 in HZ(w), again because a weakly convergent sequence in H?(w)

is bounded and the injection of H3(w) in C%(@) is compact. The same kind of
argument, now applied to the equations

/ AvpAGnd = / €, € — €] Onduw = / [€, 03] (6n — €)dw

for all 8, € Vop, likewise shows that 1, — 0 in H3(w). Hence the assertion is proved.
(v) If the norm ||(do, 1)l gras2 () x £r1/2() 18 small enough, there ezists a constant
M independent of h such that problem (Py,) has at least one solution &), that satisfies
érll < M.
This part of the proof is inspired by a crucial compactness method of J. L. Lions
(see Theorem 4.3, Chap. 1 of Lions'®). Let w?, 1 < i < d(h), be a basis of Vj,

i
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that is orthonormal with respect to the inner product ((-,-)) and let the mapping
G = (G}) : R4UW) — RUM) e defined for each X = (X;) € R4M by

GHX) = ((Ch(ma(X)) + 1a(X) = Br(xn, (X)) - Fr,w})), 1< i < d(h),
where

d(h)
mh(X) =) Xuwf.

i=1

First, we note that the mapping G" : R¥" — R4") defined in this fashion is
continuous, since linear and bilinear mappings between finite-dimensional spaces are
continuous. Next, let |-| and < -,- > denote the Euclidean norm and inner product
in R%") and let X be any vector in R%*), Then

<GMX),X>= ((C'h(.ﬂh(X)),nh(X))) + I (X1
= ((Bn(xh: (X)), 11 (X)) = ((Fr, na(X)))
2 X = (|| B D + a1l ) X1,
since the first term is > 0 by (ii) and ||na(X)|] = |X|. Besides,

| B en mu() | = sup {ﬂ'e};ﬁ [ s 01 On 5 81 € Vi, O o}

< s lIxll gz X1

since ||Xnllg2(wy < c6 x|l g2()- Consequently,

< GR(X),X > 2 (1 - cs Il gaay) X1 = ca £l 2y 1X] for all X € R,

Assume that the norm ||(¢o, ¢1)|| H3/2(y)x H1/2(v) 18 small enough, in the sense
that ||x|| g2,y < c;'. Then choose M = M ("X”m(w) ) Hf”u(u)) > 0 such that

(1= s lIxll gaguy)M? = callfll 2y M 2 0.
As a result, the continuous mapping G" : R¥*) — R¥*) satisfies
< GMX),X >>0 for all X € R¥M such that |X|= M.

By a well-known corollary to the Brouwer fized point theorem (see, e.g., Lemma
4.3, Chap. 1, of Ref. 19) there thus exists at least one vector X € R¥ " such that

GMX) =0 and |X|< M.

d(h)
Equivalently, there thus exists at least one solution &, := Y~ X;w! to problem (Py)
i==1
that satisfies ||&,|| < M.

(vi) Let (€n)n>o0 be any subsequence of the sequence found in (v) that satisfies

€n = € in H?(w).
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Then £ is a solution of the variational problem (P).

Given any 7 € V(w) let n, € V3 be such that 7, — 7 in H?(w). Hence, for any
h >0,

((Cn(€n) + &n — Br(xn,&n) — Fa,mn)) = 0.

First, it is clear that ((€x — Fr,ma)) — ((€ — F,n)). Next, ((Br(xh,€n),mn)) —
((B(x,£€),m)) by (iii). Finally, part (iii) again shows that

((éh(fh), nh)) = ((Bh(Bh(Ehy éh)a Eh)! nh)) - ((B(B(Ea E)v 6)7 77)) = ((é(E)v 77))7

since Bh(€n,€n) — B(€,€) in H(w) by (iv).

(vil) The weakly convergent subsequence (€n)n>0 considered in (vi) is in fact
strongly convergent in H?(w).

Letting 15 = &5, in the variational equations of (Py) gives

((Ch(€n)€n)) + €I = (Br(xn, €n), €)) — ((F(€n), €n)) = 0.
Then

((Ch(€n), &) = ((Bn(Bn(&n,€n),€n), €n) — (B(B(£,£),8),6) = ((C(€),£))
by (iii), since Bi(€n,&n) — B(€,€) in HZ(w) by (iv). Likewise,
((Bh(Xha gh)7 Eh)) - ((B(X1 5)7 £))

by (iii) again. Since ((Fi,&)) — ((F,€)) and £ is a solution to the variational
problem (P), we therefore conclude that lEnll® — 1€l Hence &, — € in H*(w).
(viii) The functions ¢p := Xn — Br(&n.&r) strongly converge in H%(w) to the
function ¢ = x — B(E,§).
This property immediately follows from the assumed convergence x; — X in
H?(w) and part (iv). O

5. Concluding remarks

(a) The cubic operator C : V(w) — V(w) generalizes the cubic operator C :
H2(w) — HZ(w) defined by C(n) = B(B(n,n),n) for all n € H(w) that corre-
sponds to the classical von Kérmén equations. But the operator C loses the “strict
positivity” of the operator C, a property which is essential for establishing the ex-
istence of a solution by means of a functional, as in Theorem 2.2-1 of Ref. 11 (see
also Theorem 5.8-3 of Ref. 6). To see this, note that

(@) = [ tnm Blamd = [18B@ P ds 20

for all n € V(w), but also note that it is easy to exhibit nonzero functions 7 € V(w)
that satisfy [7,7] = O when y; # <. Hence 1 € V/(w) and ((C(n),n)) = 0 does not
necessarily imply that = 0, while by contrast, [,7] = 0 implies = 0 if n € H3(w)
(see, e.g., Theorem 5.8-2 of Ref. 6).



September 20, 2005 19:55 WSPC/INSTRUCTION FILE FEM

14 Philippe G. Ciarlet, Lili Gratie, Srinivasan Kesavan

(b) Another feature of the cubic operator equation associated with the general-
ized von Kéarmén equations is that, in general, the bilinear form

(&m) € V(w) x V(w) = ((B(x,€), m)

is no longer symmetric, since the number

(B0, m) = [ e

w

is not necessarily equal to [[x, n]¢dw for arbitrary functions £,7 € V(w). As already

noted (see part (i) of the above proof), such an equality holds if at least one of the
three functions x,&,n is in the space HZ(w), a condition not satisfied here. This
second observation again prevents the usage of an associated functional as a means
to obtain a solution to the operator equation as that of a minimization problem (as
in the case v1 = v; see again Theorem 2.2-1 of Ref. 11 or Theorem 5.8-3 of Ref. 6).
Interestingly, the cubic term poses no problem in this respect, since it is easily
verified that, for arbitrary functions £,7 € V(w), the Gateaux derivative j'(¢)n of
the functional j : V(w) — R defined by j(n) = i((é’(n),n)) is indeed equal to
((C€),m)-

(c) Numerically finding the discrete solutions £, € V; amounts to solving a
nonlinear system of cubic polynomial equations. To see this, let 2;, 1 < i < d, be
a canonical basis in the finite element space Vj, and let §, = 3 Y;z;. Then the

3

unknowns Yj;,1 < i < d, satisfy the equations

Z XijXl((Bh(Bh(zj, 2k, 21), zt))
gk,

+ ZXJ'((ZJ' — Br(xh, 2i), 21)) = (Fn, %)), 1 < i < d.

By part (v) of the above proof, this system has at least one solution, as a
consequence of Brouwer’s fixed point theorem. Consequently, a continuation method
of the form proposed by Kellogg, Li and Yorke'” can be used for finding such a
solution.

(d) The analysis of the present paper can be extended to the generalized
Marguerre-von Kdrmdn equations, which model a nonlinearly elastic shallow shell
subjected to boundary conditions along its lateral face that are similar to those de-
scribed in Sec. 2 for a nonlinearly elastic plate. These equations have been described
and justified, again as the outcome of a formal asymptotic analysis, by Gratie!®.
The existence of solutions to these equations has been established in Ciarlet and

Gratie®.
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