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Abstract

Let F(z) be an analytic function in |z| < 1. If F(z) has only a finite number of
algebraic singularities on the unit circle |z| = 1, then Darboux’s method can be used
to give an asymptotic expansion for the coefficient of z™ in the Maclaurin expansion
of F(z). However, the validity of this expansion ceases to hold, when the singularities
are allowed to approach each other. A special case of this confluence was studied by
Fields in 1968. His results have been considered to be too complicated by others, and
desires have been expressed to investigate whether any simplification is feasible. In this
paper, we shall show that simplification is indeed possible. In the case of two coalescing
algebraic singularities, our expansion involves only two Bessel functions of the first kind.
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1 Introduction

The problem of obtaining the asymptotic behavior for the coefficients a,, of the Maclaurin
expansion

F(z) = Zanz” (L.1)

arises in many instances. The main sources for these problems are number theory and
combinatorics. Darboux was the first to attack general problems of this nature. When
F(2) has only a finite number of singularities on its circle of convergence, all of which
are algebraic in nature, he showed that an asymptotic expansion could be obtained for
an as n — oo. The method he used is now known as Darboux’s method; see, e.g., Wong
[13, pp. 116-122].

Darboux’s method dates back to 1878, and although often used it does not appear
to have been extended until around 1970. In a 1974 paper, Wong & Wyman [14] have
given a generalization of Darboux’s method which allows the generating function F(z)
in (1.1) to have logarithmic-type singularities on its circle of convergence. Like Darboux,
they dealt with problems in which the locations of the singularities are fixed.

When the singularities are free to move on the circle of convergence, Darboux’s
method will continue to work only if their essential configuration remains the same as the
relative positions vary. This method breaks down when two or more singularities coalesce
with each other. In that case, the asymptotic expansion will involve transcendental
functions instead of elementary ones.

In 1968, Fields [6] made a uniform treatment of Darboux’s method when two or three
singularities coalesce. More precisely, he considered the case in which

F(z,0) = (1—2) (€ = 2)(e = 2)] " f(.0) = > an(6)=", (1.2)

where the Maclaurin expansion converges for |z| < 1, A and A are bounded quantities,
the branches of (1 —z)™ and [(e — z)(e™ — z)] ~® are chosen such that each of them
reduces to 1 at z = 0, and f(z,0) is analytic in |z| < €" (n > 0 ), uniformly for
6 € [0,x]. In [6], Fields first expressed a,(6) as a Cauchy integral, then made a change
of variable and a rescaling, and finally obtained a generalized asymptotic expansion in the
sense of Erdélyi & Wyman [5]. His results are uniform in certain #-intervals depending
on n. Generalized asymptotic expansions, extending Poincaré’s original definition, are
commonly used in the study of uniform asymptotics; see, e.g., Chester, Friedman &
Ursell [3], Bleistein [1], Frenzen & Wong [7], and also Wong [13, Ch. VII].

Despite the fact that Fields’ results have achieved the so-called wuniform reduction
in the sense of Olver [11, p. 102], they are found to be too complicated for any practical
application; see, e.g., Erdélyi [4, p. 167], Olver [11, pp. 112-113] and Wong [13, p.145].
The following remark, made by Olver, is typical: it may be desirable to investigate



whether any simplifications are feasible since the results in [6] are rather complicated to
apply in their present form. The purpose of the present paper is just to pursue such an
investigation; i.e., to derive simpler forms of uniform asymptotic expansions when two
or more algebraic singularities, on the circle of convergence, coalesce with each other as
some parameter approaches a certain critical value.

As a point of information, let us mention two relevant pieces of work. One is that
of Bleistein [1], the main concern of which is uniform asymptotic expansion of integrals
with many nearby saddle points and algebraic singularities. At first impression, one
may even think that the problem under present investigation is a special case of that
treated in Bleistein [1]. This is certainly not the case, and furthermore, Bleistein’s result
is incomplete, as pointed out by Olver [11, p. 110], Ursell [12] and especially Erdélyi [4,
p.155]. The other related work is given in [15] concerning Jacobi polynomials. In fact, it
is this latter work that has motivated us to carry out the current research, although the
method used in that paper cannot be extended to the present case. Since the present
paper deals with the asymptotics of late coefficients, it is probably also appropriate
to mention some more recent work in this direction. For instance, in [2] Berry and
Howls have studied the asymptotics of late coefficients that arise in uniform asymptotic
expansions of integrals with coalescing saddles. A rigorous version of their results can
be found in Olde Daalhuis [8].

In this paper, we shall concentrate on the derivation of uniform asymptotic expansions
in the situations described above. In a sense, our method is similar to those used
in Chester, Friedman & Ursell [3], Bleistein [1], and Frenzen & Wong [7]. However, a
technique suggested by Olde Daalhuis & Temme [9] will play a central role in establishing
the error estimates. As a consequence, simple uniform asymptotic expansions and error
bounds are obtained. The main results are stated in Theorems 1 and 2; the coefficients
and the remainder term in each of the uniform expansions are presented recursively and
hence can be calculated successively.

The arrangement of the present paper is as follows. In Sections 2 and 3, we consider
in detail a simple yet typical case, namely, two algebraic singularities on the circle of
convergence coalescing with each other when a parameter approaches a critical value.
This is essentially the situation in (1.2) with 6 € [0, 7 — J], where § > 0. The derivation
of the uniform asymptotic expansion is carried out in Section 2, while the rigorous proof
of the boundedness of the coeflicients and the construction of error bounds are presented
in Section 3. In Section 4, we provide a brief discussion of the general case when many
algebraic singularities coalesce with each other at z = 1 as the parameter 6 tends to 0.
Specific examples are given in the final section, where some possible extensions are also
mentioned.



2 Two points: derivation

In this and the next section, we will concentrate on a special case

F(2,0) = [(€° = 2)(e ™ = 2)] 7 £(z,0) = 3 an(0)2", 2.1)
n=0
where f(z,0) is a function analytic in |z| < €7 with n > 0. The uniformity in the
asymptotic behavior of a,(0), asn — oo, isin 6 € [0, 7 —4]. In (2.1), « is not an integer.
Using Cauchy formula, we have from (2.1)

_a dz
Zn+1’

an(0) = L,/f(z, 0) (1 —2zcosf + %) (2.2)
271 Je

where C is a simple closed contour which encloses z = 0 but not z = e** and lies in the

domain of z-analyticity of f(z,0). We may choose C' so that it consists of two portions

Cr and Cp, where C; is a curve starting from z = e %e", enclosing z = e** but not

z = 0 in clockwise orientation, and ending at z = e%¢”, while Cf is the circle |z| = e,

oriented counterclockwisely; see Figure 1.

.
S~

Figure 1. The contour in (2.2)

As we shall see, the contribution from Cpg is exponentially small. Indeed, let us define

1 oy —a dz
An(0) = 57 . f(2,0) (1 —2zcos§ + 2%) g (2.3)
and
o) = 0) (1—2:cos0 4 22) * 2 2.4
5E()—% CEf(z, ) (1 —2zcosf + 27) prwag (2.4)



Along C', we have
(e —1)* < ‘1 — 2zcos0 + 22‘ < (e"+1)?

and hence

]. — d
— f(2,0) (1 —2zcos0 + 2°) ©

271 Jo, Zntl

()] = <c(fyme™, (2.5

where ¢ (f,n) is a positive constant. In fact, one may choose
c(fim) = |Hll§>§]{ | f(2,0) } - max {(e" — 1), (" + 1)} .
From (2.2) — (2.5), it follows that

an(f) = An(0) + €£(0), (2.6)

where |eg| < ¢ (f,n)e™ .
Now we consider the behavior of A4,(f). Making the change of variable

z=e % (2.7)
in (2.3) yields

91—2a

2 1)@ nfs 2
5 /rho(s,ﬁ)(s + 1) %e™ds, (2.8)

o= |(S55) (Faw)] e

is analytic in s for Res > —n/0 and |s £ i| < 2x/6. (The last condition can, in fact,

be replaced by [Ims| < 2% — 1.) In (2.8), I' is the image of C; under transformation

where

(2.7). That is, T is the counterclockwisely oriented curve in the s-plane which starts at
e~"™n/f, ends at /6, and encloses both s = =i.
We further introduce the notations

1 1
Ti(z) == — P4 ds , Ty(z) = —— 24 1)"%e™d 2.10
(z) 5 FO(s + 1)"%e™ds , Ty(x) 27 ) s(s 4+ 1) %e™ds, (2.10}
where ['y is a Hankel-type loop which starts and ends at —oo, and encircles s = 47 in
the positive sense. It is readily verified that L7} (z) = To().

To pick up the first level contribution from the integral in (2.8), we write

ho(s,0) = ag(8) + s50(0) + (s> + 1)go(s, 0), (2.11)
where the coefficients () and Fy(6) are determined by setting s = . More precisely,
we have

1 . . 1 : :
&0((9) = §(h0(l, (9) + ho(—l, 8)) s 60((9) = E(ho(’l, 6) - ho(—’l, 0)) (212)

5



Note that go(s,#) in (2.11) has the same domain of s-analyticity as hqo(s, ). Inserting
(2.11) into (2.8) and integrating the last term by parts yield

1
An(8) = 0172%o(8) (T1(nf) — ex,) + 6 7226(0) (Ta(nh) — e,) + e (2.13)
where
e~""n/6 e oo
en = / sS4+ 1) e ds + / s (s 4 1) e ds, (2.14)
e~ oo et™n/0
[=1,2,and
&g = 21 —+ €1,E- (215)
In (2.15),
s=e*"n/8
e1p=0""". 5 [g0(s,6)(s* + 1) €] (2.16)
y) .
s=e~¥"n/0
represents the end-point contribution and
91—2a
¥ = 5 /Fh1(8,9)(82 + 1) %5 ds, (2.17)
where . q
hl(S, Q) = —5(82 + 1)04% [90(8, Q)(SZ + 1)1,0(}
(2.18)
1

— —5 [(32 + 1)% + 2(1 — CV)S 90(3a9)-

It can be seen from (2.18) that h{(s, 6) has the same domain of s-analyticity as go(s,8),
and hence as ho(s,8). It can also be seen that the integral representation (2.17) for ¥
is of the same form as (2.8) for A4,(6). Thus, the procedure can be repeated.

Define inductively

hi(s,0) = ar(0) + sB,(0) + (s* + 1) gu(s,0),  k=0,1,2,---, (2.19)
and
hiy1(s,0) = ; {(52 + 1)(;1 +2(1 — a)s} gr(s,0), k=0,1,2,---. (2.20)

Repeated application of integration by parts as above gives the formal expansion

m—1 m—1
0 0
an(0) = 6'7**T(nb) al;(k ) +0'7Ty(n0) > ﬁl:v(k :
m k=0 ' . (0) k=0 ﬁ /(9) , (221)
€k,E 1—2a (079X e, + Di £T,
+{€E‘+Z 0T - +n—mzm}
k=1 k=0

6



form=1,2,---, where

s=e""n/0
erp =0 o [gea(s,0)(s* + 1) "] Ck=1,2,--, (2.22)
s=e~iTn/0
and
91—2a
Y = : /hm(s,<9)(s2 + 1) ds, m=1,2,--- . (2.23)
2 Jr

One can see from (2.19) and (2.20) that hi(s,d) and gi(s, ) have the same domain of
s-analyticity as ho(s,8).
To show that e, and e, are exponentially small, we set

I= / (s + 1)~ 0%(s, (2.24)
n/0

and make the change of variable s = (¢ + 1)n/6. The integral in (2.24) becomes

o0 92 -«
I = pir2egolemm / [(t +1)%+ ?] e~ dt. (2.25)
0

Note that 62/n? > 0, and

[(z& +1)2 4 77_2] h < (t+1)7*

for # € [0, 7] and ¢ > 0. Hence

1] < C(n)g2etem / (t+1)"2e M dt < C(n)HQQ‘l%e‘””, (2.26)
0

where we have used C'(n) as a generic symbol to denote positive constants, independent
of both 8 and n, whose values may differ in different places. From (2.14) and (2.26), it
follows that 1

0 o] < Clyp)—e ™ (2.27)

and
6> epn,| < C(n)e™™ (2.28)

for 8 € [0,7]. The last inequality is obtained by combining (2.14) with (2.26) and
integrating by parts once in both integrals in (2.14).
It can also be shown that

INa+ %)

hi(nd) = I'(2a)

(2n0)* 2]

1
a—3

(nh) = % (%0> Uy (0), (2.29)

where J,(7) is the Bessel function of the first kind. The first equality is obtained by
deforming T'y so that |s| > 1 for s € Ty, and expanding the factor (s* + 1)~ in powers

7



of 1/s; (2.29) then follows from the series representation of the Bessel function; see, e.g.
Wong [13, p. 231]. Similarly, we have

o JBVE ()™

NG

Ty(nf) = Joy(06) = s (”;) B T 1(nf) (2.30)

or, equivalently,

Ty(no) = Y™ (”_‘)y_% T3 (n0). (2.31)

T(a) \ 2 o

3 Asymptotic nature of the expansion (2.21)

3.1. Statement of a main result. In the previous section, we have shown that the
Maclaurin coefficients a,(#) in (2.1) can be expressed in terms of the integrals T} (n#)
and T3(n#) as in (2.21), and that 77 and 75 can in turn be expressed in terms of the Bessel
functions J,_1 and J,,1; cf. (2.29) and (2.30). In this section, we proceed to prove one
of the main results of the present paper, namely, a uniform asymptotic expansion for
a,(0) as n tends to infinity.

THEOREM 1. Assume that f(z,0) in (2.1) is uniformly bounded for 6 € [0, 7], and
is z-analytic in |z| < e"(n > 0). For any integer m > 1, we have

an(0) = 62T} (nf) 3 O"“(If)) + 02Ty (nh) 3 5’“(:)) +&(6,m), (3.1)
o o
where
| (0)] < M, (3.2)
and
18:(0)/0] < M, (3.3)
fork=20,1,2,---, and
p1—2a
le(8,m)| < M, o [|T1(n6)| + |To(nbd)|] (3.4)
form =1,2,3,---. The positive constants My, k =0,1,2,---, are independent of 6 for

0 €[0,m—6], 6 >0, the coefficients o (0) and Br(0) are defined successively by (2.9),
(2.19) and (2.20), and the remainder (6, m) satisfies

m m—1
0 0 1
(O m) =ep+ Y L groa o 2ulen + Bull)er, —Sa (35)
k=1 ’

nk nk
k—0

with explicit expressions for ep, er,, exp and X, given in (2.4), (2.14), (2.22) and
(2.23), respectively.



In view of the relations (2.29) and (2.30), we further have

COROLLARY 1. Under the same assumptions as Theorem 1, the following holds

3

3

ay(0)

nk

an(0) = (%)M Jo_1(n0) n (2”—0)aé Joys(n0) ~ B’;(f) +E0,m). (3.6)

i

0

i

With oy, B and (6, m) replaced by éy, By and £(6,m), respectively, the estimates (3.2),
(3.3) and (3.4) remain valid.
Indeed, inserting (2.29) and (2.30) into (3.1) gives explicitly

ao(0) = vman(6)/T(a),

Br(0) = —V7B(0)/T (), k=0,1,2,---,
and
20, m) :5(0,m)+% (55)"" %‘Tl(‘)) nimJa_é(nQ). (3.8)

If in Corollary 1 we use (2.31), instead of (2.30), then Jog1 10 (3.6) should be replaced

by Ja_%, and &kﬁk can be replaced by ag, G.
The remaining part of the present section is devoted to the proof of Theorem 1, and
we shall proceed step by step.

3.2. Boundedness of the coefficients. The approach we take is stimulated by the work
of Olde Daalhuis and Temme [9], where they have introduced several classes of rational
functions in order to obtain rigorous error bounds for Airy-type uniform asymptotic
expansions. For our purpose, we introduce two classes of rational functions associated
with the iterative procedure (2.19) and (2.20). In fact, using Cauchy’s integral formula
and the fact that ho(s, ) is s-analytic in the region

D = S‘Resz—ﬂ, |s:|:i|<2—7r , (3.9)
Z G
we have from (2.12)
1 1
ap(f) = Z—M/CAO(S’H)hO(S’H)dS . Bo(f) = Z—M/CBO(S’H)hO(S’e)dS’ (3.10)

where C is a contour in D that encloses s = &i in the positive sense (see Figure 2),



/e

Figure 2. The domain D and the contour C

5 1
Ap(s,0) = 211 and By(s,0) = 71 (3.11)
Define inductively
1 -1 2 d
Ak(S,e) = 5(1 + s ) (S + 1)% + 2as Ak_l(s,Q) (312)
and
1 2 -1 2 d
By(s,0) = 5(1 + 57) (s* + 1)% +2as p Br_1(s,0) (3.13)
for k = 1,2,3,---. The differentiation operator in (3.12) and (3.13) can of course be
written as . J
(1) (" + 1) A :
9(8 +1) s ((s + 1) Ay 1(8,0))
In terms of these rational functions, we obtain the following representations.
LEMMA 1. For 6 € [0,7] and k =0,1,2,---, we have
(0 1
ap(d) = (1 - 2@)L1(> + — /Ak(s, &) ho(s,0)ds (3.14)
0 21 Jo
and .
Br(0) = —,/Bk(s,ﬁ)ho(s,ﬁ)ds, (3.15)
27t Jp

where C is the same contour as given in (3.10) and, for the sake of convenience, we have
set B_1 = 0.

10



PRrROOF. We shall demonstrate only the result in (3.14). The corresponding result in
(3.15) can be established in a similar manner. The case k = 0 is part of (3.10). For
k > 1, we have from (2.19) and (2.20)

ap(f) = Ao(s O)hi(s,0)ds

o
_ 271m CAo(s ,6) {—%(s2 + 1)“% [95-1(s,0)(s* + 1)1 2] } ds
B 271m [ A5, 0)(5" + Dgia(5, 0)ds

erz [ A1(5,6) {he-1(5,6) — aua(6) = $51-1(0)) ds

% . Ai(8,0)hy—1(s,0)ds + (1 - 2@)6k_91(9)
1 »

=5 /CAk(s 8)ho(s,8)ds + (1 — 2a) I

thus proving (3.14). Here repeated use has been made of the facts that

1
A = =12
ot ), k(s,0)ds =0, k=1,2,

0sA;(s,0)ds = 2a — 1),

27t Je
and

1
A == = 2 .«
- /CHS k(s,0)ds =0, k 3,

which follow from (3.11), (3.12), and (3.17) below. |

LEMMA 2. For 6 € (0,7], there exists a constant My > 0, independent of 8, such
that
|Ar(s,0)] < Mp0 and |By(s,0)| < M0 (3.16)

for |s| < M/6, |s—1i| > L/6 and |s +i| > L/, where L and M are positive constants.

PROOF. By induction, one can use (3.11) and (3.12) to write

1 Prt1(s)
for k = 0,1,2,---, where ppy1(s) is a polynomial of degree k + 1, with coefficients
independent of . It can also be shown from (3.11) and (3.13) that
1
By(s,0) = () (3.18)

ek (1 + 82)k+1

11



for £ =0,1,2,---, where g,(s) is a polynomial of degree k, independent of #. The two

inequalities in (3.16) now follow from (3.17) and (3.18), respectively. |

To estimate hg(s,#) in (2.9), we first recall that f(e~%,6) is uniformly bounded for

6 € [0,7] and Res > —n/6. Hence there exists a constant A, independent of 6 and s,
such that

|f(e %,0)] < My for Res > —n/6. (3.19)

Next, since (e* — 1)/z has no zero and is bounded on the circle |z| = b for 0 < b < 2,
there exist positive constants my and M, such that

z

my <

‘SMb for |z| <b.

Hence, for 0 < b < 2w, we have

6750 o 610 b
< < M, f | < -
my < s—0| = , for |s+z|_9
and , " ;
e—80 _ ot
<N < M, f — < = 2
my < EE p for |s—1i| < 7 (3.20)

By combining (3.19), (3.20) and (2.9), we obtain

LEMMA 3. For 6 € (0,7], there exists a constant Mp > 0, independent of s and 6,
such that

. (3.21)

| o

b
|ho(s,0)| < Mp  for Re s> —g, |s +i| < 7 and |s —i| <

Now, for # € [0, 7 — 6], one may specify b = 27 — ¢ in (3.21). Without loss of generality,

we may always assume that n < /7(37 —26). The contour C in (3.10), (3.14) and
(3.15) may be deformed so that it consists of i) |s+i| = /6, Ims > 0 and Res > —n/6,
ii) |[s— i =b/6, Ims < 0 and Res > —n/0; and iii) the segment of Re s = —n /0 joining
i) and ii); see Figure 3. The constants M and L in Lemma 2 may be chosen to be
M = max{n,37 — 26} and L = min{n,§}. A combination of Lemmas 1-3 then gives the
boundedness of the coefficients o (#) and G,(0)/6, i.e., (3.2) and (3.3), thus proving that
part of Theorem 1.

3.3. Boundedness of the error term. To describe the behavior of Ti(nf) and T2(né),
we make use of (2.29) and (2.30). From the behavior of J,_1(nf) and Ja+%(n0) when

1
3
nf is small, we have

(n#)?*t,  as nf — 0+,

12



-n/0

and
1 2c
T (9 ~ (9 20—-2 2a—1 0 R
00~ o0 - T T g s 0
see, e.g., Wong [13, p. 231]. Hence
|T7(n0)| + |Ta(nd)| > C - (nh)*>* (3.22)

for nf € [0, ] and e small, where C' depends only on e. The interval of validity for (3.22)
can of course be extended to nél € [0, B] for a finite B, since J,_1(7) and J,,1(7) have
no common zeros. The constant C may then depend on B.

In view of the behavior of the Bessel function (see, e.g., Wong [13, p. 206]), we again

have from (2.29) and (2.30)

1 (no\*" 1
T (nf) ~ ) <7> Ccos (n@ — §Om> , as nf — +oo

and

1 /' . 1 20 — 1 1
To(nb) ~ (o) (?) {sm (n@ — 5@%) + g cos (n@ = éom)]
as nf — +oo. Hence
T\ (n6)] + |T2(nd)| = C(n)>" (3.23)

for nf € [B, o), where B is a large but fixed number.
To estimate the error terms, we note from (2.27) that

(ne)Qa—l < O (n9)2a—1

nmn nm

|€T1| S 05:7) 02&—16—7771 — 0(77) {nm—Qae—nn}

13



for nf € [0, B], and from (2.28) that
(n9)2a—1

nm

9|8T2| S C

also for nf € [0, B].
When n# € [B, o), and hence for 6 € [B/n, 7], it follows from (2.27) that

(ng)~1 < C(n@)a_l.

nm nm

[8%

|5T1| <C {%enn} (ne)afl <C {nm+|a\faefnn}

Similarly, from (2.28) we have

9 a—1
Olen| <

nm

Summarizing the last four inequalities, we obtain, in view of (3.22) and (3.23),
1
0" en| < Cn—{ITi(n0)] + [T (n0) 1}, 1=1,2,

where C), is a constant independent of n and 6. Accordingly,

m—1

ey llen B0 < VR ) 4 ey 320

k=0

for all n and 0, where use has been made of the estimates (3.2) and (3.3).
An estimate for g can be obtained by comparing (2.5) with (3.22) and (3.23). Since

91—204 (ne)Qa—l < 001—204 (ne)Qa—l

nm - nm

e~ — {nm—Qa—}—le—nn}

for nf € [0, B], and
12« a—1 1-2a a—1
(nh) < 09 (nh)

nm nm

for nf € [B, o) (and hence 6 € [B/n, 7] ), it follows that

e < O {7lmfa+|a\+1efnn} o

01—2&

ler| < My, [|T1(n0)| + | Tx(n0)]] . (3.25)

nm

To investigate &, p and X,,, we first analyze hy(s, ) and gx(s, ). Let us introduce
another class of rational functions associated with (2.19) and (2.20). By Cauchy’s theo-

ho(s, ) = L/ ho(u, 0) du,
C'LL

27 U—3

rem,

where the integration path C, is a contour that lies in the domain D of w-analyticity
(see Figure 2), and encloses u = s and u = % in the counterclockwise direction. Set

1

uUu—5

Qo(u,s,0) = (3.26)
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Then

ho(s, 8) 27”/ Qolu, s,8)ho(u, 0) du. (3.27)
We further define
Ors.0) =2 | L 20 1 Qp (uys,0), k=1,23 (3.28)
kY, S, - 9 du au2+1 k—1\U, S, 5 — Ly Ly 3 .

see the comment following (3.13).
In view of (3.26) and (3.28), it can be shown by induction that

k l+1 1+U2)

1 & (u)
Qu(u, s,0) 7‘2 (3.29)

where P;(u) is a polynomial of degree [ whose coefficients are independent of u, s and 6.
The last equation suggests that

/QkUSQ 7 k:1a273a"',
27

27m 5 Ou:(u, s,0)du = 2a — 1,

and |
— uQr(u, s,0)du =0, k=2,3,4,---
27 Jo.

Similar to the derivation of (3.14) and (3.15), we have
LEMMA 4. For8 € [0,x] and k=0,1,2,---,

Br-1(0)
0

hi(s,6) = (1 — 2a) + %/ Qr(u, s,0)ho(u, 8)du, (3.30)

where, for convenience, we have set 5_1(0) = 0.

From (3.29), one can also see that the following estimates hold.

LEMMA 5. For 6 € (0,7),|u| < M/6, |s| < M/O, lu—s| > L/6, lu—1i| > L/0 and
|u+1i| > L/0, there exist constants My, k =0,1,2,---, such that

|Qr(u, 5,0)] < Myb. (3.31)
Choose a s-contour [’y similar to C, described in the paragraph following Lemma 3.
[ consists of i) [s+i| =0/6, Ims > 0 and Res > —(n—¢)/0; ii) |s —i| = b/0, Ims < 0

and Res > —(n—¢€)/60; and iii) the segment of Re s = —(n—¢)/6 joining i) and ii), where
€ is a positive number which is sufficiently small so that I'y encloses +i; see Figure 4.

15



Figure 4. The contour I'; and [,

Similarly, we define I',, consisting of i) |s+i| = (b+¢)/0, Ims > 0 and Res > —n/6;
i) |[s—i| = (b+e¢€)/0, Ims < 0 and Res > —n/0; and iii) the segment of Res = —n/0
joining i) and ii). Denote by Dg the domain bounded by I's. If s € Dg and u € Ty,
then Lemma 3 holds with s replaced by u, and Lemmas 4 and 5 hold since [',, encloses
u = s and u = &4, and lies in D, and since it follows from the previous description that
lu—s| > €/6.

We notice that in the previous derivation leading to (2.21) and the estimation leading
to (3.2), (3.3), (3.24) and (3.25), we only require that n be a fixed positive number.
Hence, in these cases we can replace 1 by a smaller number, say, ¥ = n — ¢, and
the validity of these previous results will remain. For convenience, let us continue to
denote the smaller ' by . With this understanding, one obtains the following result by
combining Lemmas 3-5 and using the fact that [, [du| = O (1/6).

LEMMA 6. For 0 € (0,7] and k =0,1,2,---, we have
|hi(s, 0)| < M, s € Dg, (3.32)
where Dg is the domain bounded by i) |s +i| = b/6, Res > —n/0 and Ims > 0, ii)
|s — i =0/0, Res > —n/6 and Im s < 0, and i) Res = —n/0, |Ims| < \/1? — n?/6.

b

We are now ready to consider the term ¢; g given in (2.22). By (2.19)

ge1(s,0)(s* + 1)'72e™? = |y, 1(s,0) — ap 1(0) — S@CTKQ)Q} (8% 4 1)7 e,
Since n?/0* < /0% +1 < (> +72) /02, (s°+ 1)~ is bounded by C(n)6%*. In

s=etity /0

view of the boundedness of hy_1, ap_1(6) and 5x_1(0)/0, it follows that

lerBl < C(n, My—1)e™ ™. (3.33)

16



Using the inequalities preceding (3.25), one can show that the estimate for eg in (3.25)

also holds for e, g,k = 1,2, ---. Hence, we have
m EkE 91 2a
Z s < M, [|Tl(n9)| + |Ta(nb)]] - (3.34)
k=1

The only remaining task in the present section is to estimate %, given in (2.23). For
nd € [0, B], we deform the integration path I" so that it starts from e~"/6 and ends
at €™n/6, and that there are positive constants L and M such that |s £i| > L/# and
|s| < M/ along T'; for an example of such paths, see the paragraph following Lemma 3.
Now make the change of variable nfs = ¢, and denote the image of the s-curve I' by Ft
It is readily seen that I'; is a curve which starts at e=""nn and ends at ¢ nn; along Ty,
we have |t £ inf| > nL, |t| < nM and

91—2a

—(nf)* ! /F hin(s,8) (2 + (n9)?) " e'dt. (3.35)

27

S =

We further deform T so that it traverses from e~ nn to " (2B) along the lower edge
of the negative real line, moves to €™ (2B) on the circle || = 2B in the counterclockwise
direction, and then along the upper edge of the negative real line to e nn. The deformed
curve will still be denoted by I';. Along this new curve, ‘(1&2 + (n0)2)_a‘ < C(B)t—*
and |h,(s,0)| < M,,; cf. (3.32). Thus,

S| < 072C(M,, B) ()2~ / 722! ||
Py (3.36)

< C(M,,, B9~ (ng)>*~"
for nf € [0, B]. In view of (3.22), we obtain

B (0)] < My~ [Ty (n0)| + |T2(n0)]] (3.37)
fornd €[0,B], m=1,2,3,---

Finally we consider the case when nf — +oo. First, we introduce a curve I'. de-
pending on n#, which starts at e=""5/6, moves to e~ /nf along the lower edge of the
negative real axis, encircles the origin along the circle |s| = 1/n6 in the positive sense,
and then proceeds from e /nf to €™n/6 along the upper edge of the negative real line.
We now deform the path of integration in (2.23), and split it into three parts: ['; = T'.+1,
' ;=T.—1iand I, where T, consists of three segments on Res = —n/6 connecting i)
€™n/0 —i and €7 /0 + 1, ii) €7n/0+1i and ™1 /6, and iii) e /0 —i and e"""n/0; see
Figure 5.

We know from Lemma 6 that h,,(s,0) is bounded on I' = I'; |JI'_; T, and that
the bound is uniform in 6 € [0, 7 — 6]. Consider

1 zn@
L= — [ hu(s,0)(s*+1)"%"ds =

27 Jr, 2me

/{h (s+14,0)(s+2i)"*} s ds.

17
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Figure 5. Contour ' =T; T ;|-

To obtain an estimate for I;, our argument is similar to that used by Olver [10,
pp. 71-72] to prove Watson’s lemma. For the purpose of completeness, we give a brief
account of this argument. In the last integral we put v(s) = h,,(s +,0)(s + 2¢)~* and
make the change of variable ¢ = n#s. Since v(s) is uniformly bounded on {['. : Re
s > —3}, we have

ezne

_ / v(s)s *eds
2mi {T'¢:Re s>—3}

ein@ (0+)
= (n)*! / v(s(t))t *etdt

2mi 3no

(0+)
< C/ t|~eRetdt| » (nd)>".

On the other hand,

ein@ MmC o n/0
/ w(s)e”esds‘ < #/ {220 gy
2mi {Tc:Res<—3} T 3
S 067377,9

¥

which is in turn bounded by (nf)*~! for nf > B. The second last inequality follows
from the fact that w(s) = hy,(s+1,0)(s+2i)"*s™ is uniformly bounded by C|s|™* on
that part of T'.. Hence

L] < C(ng)* . (3.38)

Similarly, we have
11| < C(no)*". (3.39)

The estimate of the integral I, over I, can be obtained by taking the absolute value of
the integrand. Indeed, we have

|I,| < Ce™ ™92 < C(nf)*. (3.40)

18



To obtain the last inequality, we have used the fact that 8 € [B/n, x| for nf € [B, 00).
A combination of (3.38), (3.39), (3.40) and the fact that 3, = ' 72*([; + I_; + I,.) gives

I5(0)] < CO22(n6)>~ < CO*2* {|T;(n0)| + |To(nd)|} (3.41)

for nf € [B,4+o0), B being sufficiently large, m = 1,2,3,---; see (3.23). The results in
(3.37) and (3.41) imply that there exists a constant C' such that

S (0)] < CO*{|T1(n0)| + |To(nd)]} (3.42)

for all n and 6. The desired result (3.4) now follows from (3.24), (3.25), (3.34), (3.42)
and (3.5).

4 Many coalescing algebraic singularities

4.1. Formal derivation. In this subsection, we give a brief description of the general
case when there are two or more branch points on the circle of convergence that coalesce
with each other when an auxiliary parameter approaches some critical value. Typically,
we assume that the generating function and its Maclaurin expansion take the form

q 00

F(2,60) = {Hukw) - >} (5.0) =3 an(6)", (4.1)
k=1

where |z, (0)| = 1, oy, are constants (for the sake of convenience, we assume that all these
quantities are real), and f(z,6) is an analytic function of z in |z| < €", with 1 > 0 being
a constant independent of . Also, we assume that f(z,8) is subject to some smoothness
and uniform boundedness conditions, and that

z,(0) — 1 as 6 — 0. (4.2)

The problem is to derive an asymptotic expansion for a,(f) as n — oo, which holds
uniformly for 8 in some interval containing ¢ = 0.

If we further require that each z(0) be continuously differentiable with respect to 6
in a neighborhood of # = 0, then by our assumption we can write z;(6) = €%+ where
each s;.(6) is real and s4(0) = —iz,(0).

As in (2.2), Cauchy’s formula gives

q
() = 5 /c £(2,0) {g(zk(ﬁ) - z)_a’“} s, (4.3)
where C'is a closed curve that encloses the origin but not the branch points z = z(6), k =
1,---,q. For later use, we may choose C such that it consists of two closed contours:
i) Cg, the circle |z| = €", oriented counterclockwise and ii) C}, a clockwisely oriented
contour that starts and ends at z = €, and encloses all the singularities z(0),k =
1,--+,q, but not z = 0; see Figure 6. (C; need not be a circle.)
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Figure 6. The contour in (4.3)

Denote by A,(f) and eg(#) respectively the integral in (4.3) over Cg and C;. Using
the transformation (2.7), that is

z=e ¥ (4.4)
the integral A,(6) can be expressed as
Qlfa q
An(0) = — / ho(s,8) (5 4+ isp(0)) " 3 "% ds, (4.5)
2m Jr Pl

q
where o = E Qs
k=1

4 ei@sk(e) — o 0s %%
ho(s.0) = {H (m) }f(ees,e), (4.6)

k=1

and T is the image of C; under transformation (4.4), which starts from s = e="5/6,
encircles all points s = —isy(6) in the counterclockwise direction, and ends at s = €™ /6.
To derive the formal expansion of a,(6), we introduce the functions

Ti(z) = 217”/r st {H(s + z’sk(Q))ak} e™ds (4.7)

k=1
[ =1,2,---,q, where Iy is a loop of Hankel type, which starts from —oo, encircles all
points s = —is,(#) in the positive direction, and ends at —oco. Note that Tj(x) is the

(I — 1)th derivative of Ti(x); see (4.49). Now write

q

hol,8) = Boa(8) + BoaB)s + -+ fog ()" + {H<s + z’skw))} gols.0).  (48)

k=1
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From (4.3) and (4.5), it follows by integration by parts

an(0) =61 Zﬁo,l(Q)Tl(ne) + {5]5 + igl,E‘ A ZﬁO,l(Q)gTz + izl} , (4.9)

=1 =1

where e is given in the paragraph containing (4.3),

o 1 {—1 . . — xs
er = 5 s {g(s+zsk(0)) ’“}e ds, (4.10}

T\l

s=e'"n/f
070‘ . . 1« nds !
E1p = 5 go(s, 0) { | | (s + is,(0)) } e , (4.11)

k=1

Qlfa q
_ . —ay nés
L=t /F ha (5, 6) {g(s+zsk(0)) }e ds (4.12)
and

14 d <~ -1
— _ ] . 4.1
91:[ s +isi(0 { ds +Zs+isl(0)}go<8’e) (4.13)

=1

This procedure can be repeated, and we define inductively

0)=> Bu(0)s' {H s+ isy(0 }gj(s,e) (4.14)
and

q q
d oq—l
— —_— ; 4.1
hjt1(s,0) = |:| s+ isk(0 { Is + g s—i—z’sl(H)}gJ(S’e)’ (4.15)

7 =20,1,2,---. The following expansion is then derived, with its coefficients and remain-
der expressed in terms of h;(s,6) and g;(s,6):

0) = 0\ O‘ZTl nd ngkl(e) +e(0,m) (4.16)

k=0
form=1,2,3,---, where
£ L& B 1
(6, m _5E+Z lE—el “Nen Y kﬂlk + T (4.17)
I=1 k=0 ' '

and e, is given in (4.10). The other remainders g, £, g and ¥, are given explicitly by

- 217” £(,0) {H(zk(e) - z)o"“} 2nlgs, (4.18)

Ce k=1
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s=e'™n/0
o L , . !
ELE = %gl_l(s, g) {H(s +isi(60))" O‘} et (4.19)

k=1

s=e~¥"n/0

and

Yo = A /Fhm(s, 6) {H(s + isk(ﬁ))o"“} e ds. (4.20}

271
k=1

The above derivation is in a sense motivated by that of Bleistein [1]. But in [1],
the relevant integrals involve saddle points of the phase function, whereas in the present
case, there is no saddle point at all. The key part of the present paper lies in the
error estimate, which makes the expansions in (3.1) and (4.16) uniformly asymptotic.
Although the analysis of the estimation is quite complicated, the derivation itself is
relatively straightforward.

To illustrate that our formal derivation can be made rigorous, let us consider the
special case

sk@) =sp, k=1,2,...,¢, sy #£5 for k#£I, (4.21)

or, equivalently, z;(6) = e*+? in (4.1). Here, we do not intend to give the details of the
analysis, but will provide the key steps and facts.

4.2. Classes of rational functions. Putting s = —is;, into (4.14) yields
q
Z(_Z’Sk)lilﬁjal(e) = h](_lslﬂ 0)7 k= 17 27 g (422)
I=1
Let my; = (—is) "' for k,1=1,2,--- ¢, and
M = (mrp)gxq: B; = (Bji)gx1, and hy = (h;(—isk, 0))gx1. (4.23)
Then, (4.22) can be written in the matrix form

Mg; = h;

or, equivalently,
ﬁj _ M_lhj (424)

since M is nonsingular when s, # sy for k& # £k'. Writing
M~ = (ml,k)qua (4-25)

one has

ds, (4.26)
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where C is a closed contour that encloses all the poles s = —isp, k=1

= v = L, q.
Define .
—~ My
A = ’ =1,2,---,q. 4.2
O,Z(sae> ;s—l—isk’ l ) Ly » q ( 7)
Then (4.26) implies that
1
6071((9) = 2— /A(),l(s, (9) ho(S, H)ds (428)
i Jo
Inductively, we define
14 d :

Aji(s,6) =3 1:[ s +isk) ”’“—S Aj_q(s,6) g(s + isg ) (4.29)
for I =1,2,---,gand j = 1,2,---. The sequences {A;;}32,, | = 1,2,---,¢q, form ¢
classes of rational functions. In fact, in view of (4.23), (4.25) and (4.27), we have

1 —isy -+ 1/(s+isy) -+ (—isy)T!
1 1 —isy -+ 1/(s+isy) -+ (—isy)?t
A 0) = . 4.30
0.4(5,0) det M ( )
1 —is, - 1/(s+is,) -+ (—isy)??

The determinant on the right-hand side of this equation is obtained by replacing the [-th
column of the matrix M in (4.23) by the vector (1/(s + isy)),x1. Inserting

. i (—i8k>j/_1 4 1 (—i8k>q
B et 5 s9 s+ isy,

into (4.30), we obtain

—~ s + 28
and, on account of (4.27),
P_Z(S>
Aos(5,0) = =05y _q19... 4 431
OJ( ) ZZI(S + ZSk) q ( )

where P, ; denotes a polynomial of degree at most g — [.
From the iterative relation (4.29), it can be deduced that

1 Pyrng-i-5(s) ‘
Ai(s,0) == ZAEL LA =0,1,---; {=1,2,--- 4.32
j,l(37 ) 0i {HZ:] (5 4 isk)}J+1 v J y L ) y < 4, ( )
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where as before P,,(s) denotes a polynomial of degree at most m. In a manner similar
to that leading to (3.14) and (3.15), one obtains

ﬁj,l = _Z Z b, '11/6 ﬁj — —/AJZ(S Q)ho(s Q)d (433)
C

G=1 =1+

for j=0,1,---,and [ =1,2,--- ,q, where B = 0 for k < 0 and each

1 ! ’
= — J - r=1
by 2m/c{‘9 Apa(s,0)} ' ~ds

is a constant independent of 8, s and the integration path C since this quantity depends
only on the behavior of 67" A;,(s,6) (which is independent of 8; cf. (4.32) above) as
§ — 00.

We close this subsection by introducing another class of rational functions. Let us
define inductively

1
QO (u7 S, 9) = ) (434)
u— 8
and
q
Qi1 (u,s,6) = +Z | Qs 0) (4.35)
for j =0,1,2,---. Asin (4.32), we have
1< P,
Q,(u,s,0) = —Z NG . (4.36)
07 = (u— s =TT (u +dsg) }
for j =0,1,2,---, where P, (u) denotes a polynomial of degree at most m. Furthermore,
from (4.36) one gets
11 K Pils)
Q;(u,s,0) = pribws ; Juk (4.37)

for fixed s and large u, where again P;(s) denotes a polynomial of degree at most k,
whose coeflicients are independent of u, s and 8.

Now assume that C is a simple closed u-contour that encloses u = s and the points
u=—s forl=1,2,---,q. Since (4.37) suggests that

. P S), ifl—"—120,
07w Qy (us@)du-{ yimy=1(s) g (4.38)

0, otherwise,

1
i c
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on account of (4.14) and (4.15) we obtain the following expression
h;(s,0) —QM/QOUSH i(u, 0)du

q
- L /C Q1 (u, 5, 6)hy 1 (u, 8)du — ; B 11(6)- 07 Prys(s) .

= /QJ u, s,0)ho(u, 0)du — Z Z Bija(0) - 077 Py 1 (s)

P'=11=j"+1
for j=0,1,2,---

4.3. Properties of T;(z). To investigate the behavior of the functions 7;(z) defined
in (4.7) for bounded z or as x — 400, we consider the integral

(0+)
Ipa(e) = — / " ps)smaerds, (4.40)

27

where f(s) is an analytic function in |Im s| < ¢y and satisfies
|[f(s)] < Celltes

for Res < My and |Ims| < §y—¢, and C, K, § and ¢ (< dp) are constants. Under these
conditions, we have

Ifo(x) ~ Z Mo a=k-1 as = — +oo, (4.41)
k=0

where the coefficients ¢ are given by the Maclaurin expansion

oo

fls) = Z s,

k=0
which holds in a disc of radius at least dy. For a proof of (4.41), the reader is referred to

Wong [13, p. 48, Ex.14].

We now return to T;(z) given in (4.7). For each factor (s + isp)™* in (4.7), we
choose the branch which is positive when s + s, is positive. Then we deform the path

of integration I' and break it into ¢ portions: I'y, I'y, -+, I',. If I > 1 and s, # O for
k=1,---,q, then we set so = 0 and introduce an additional portion I'y. Here, each I';.
is a loop which starts at —oo — isg, encircles s = —isy in the counterclockwise direction,

and ends at —oo — 7s,. Each T'y is carefully chosen so that it encloses no other branch
points s = —isy, k' # k.
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As an illustration, we consider T, and put fi(s) = H (s +i(sp — s)) " . From
k' #k
(4.7), we have

Z fk s+ isk)(s +isk) e ds. (4.42)

In each integral on the right-hand side of (4.42), we make a translation, and apply (4.41).

The result is
q

I(z) = Zeﬂ's’“” frai ()
—iSpT Ck,l Okl
~ Z ’ ZF o

ar — 1)

(4.43)

as x — 400, where ¢ is the coefﬁment in the Maclaurin expansion

oo

fk(S) = Z Ck’lsl.

=0

Since s, # sy for k # k', and since ¢, = H(isk/ —isg)” % £ 0, if each « is not an
k' £l
integer, then from (4.43) it follows that there are constants M and C' such that

|Ty(x)] > Ca® * for x> M, (4.44)
where o™ = max {ag}.

When [ > 1, there are two subcases to be considered: (i) s, Z0forallk =1, - ,¢;
and (ii) s, = 0 for some k. The argument given above applies to both cases. Indeed, we
have

—iSET Ckl % —i—-1
Ze kzr o ) . (4.45)
as ¥ — +oo, when s # 0 for k = 1,2,---,q where ¢, is the coefficient of s' in the

Maclaurin expansion

o0 oo
(s —isk)' ™ fuls) = (s — i)™ Y cpas’ = D s
=0 =0

and ¢ = (—isg) "lego # 0. Also, we have

q

) =Ty
~ Z —zswz ajfll_l 20—l=1

(4.46)
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as * — +oo, where &, = ag if s, # 0, & = o, — (I — 1) if s = 0, and &, is the
coefficient in the Maclaurin expansion

in particular, ¢, = H (isp — i5g) ¥ # 0.
K2k
Now, let us consider 7}(x) when z is bounded. We again start with (4.7), and choose

[y so that |s,/s| < 1for k=1,2,---,q and s € T'y. Clearly, we can write
q q ZSk —Q 0
- —ap kR _ o« —k
H(s+zsk) s H<1+ . ) s Zaks :
k=1 k=1 k=0

where a5 can be expressed in terms of s, and «y, and ag = 1. Convergence of the last
expansion is absolute and uniform for s € I'. Inserting this into (4.7) gives

Ti(w) = i@k%m/

5
k=0 r

l—a—k—-1_xs a—1 = ak k
ds = . 4.47
c e ;F(a—lJrkJrl)x (4.47)

From (4.47) it is evident that each #!=2T)(x) is an entire function, and that the behavior
of Ty(z) as * — 0 is x*~!. Furthermore, there exists a small € > 0 such that

q

> IT(x)| = Ca (4.48)

=1

for z € (0,¢€], where C is a positive constant. Next, we wish to extend the interval of
validity of (4.48) to z € (0, M| for any finite M. To this aim, we only need to show that

Ty(z), 1 =1,2,--- ,q, have no common zero in (0, +oc). This can be shown by the fact
that
dl—l

and that 77 (x) satisfies an ordinary differential equation in z of order ¢. Indeed, we can

q q
H(s +is) = Z ds',
1=0

k=1

write

where d, = 1. Hence,

1 : N d
H(s + iy, ) T e 0 ds = Z dl@Tl (x). (4.50)
1=0

271 r P

Using integration by parts once, it can be shown that the left-hand side of the last
equation is equal to

11 :
= / P,_1(s) H(s +is,) " e ds, (4.51)
r

x 27
k=1
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where

P, 1(s) = Z(l — ag) H s+ isg) chs

k=1 k/#k

In view of (4.50), inserting the last equation into (4.51) eventually leads to
d? =
r——Ti(x)+ Y (zd; + &) Ti(x) = 0. (4.52)
1=0

Hence, if there exists some zy > 0 such that

!
then from (4.52) we conclude that

Ti(z0) = Tiy1(29) =0, 1=0,1,---,¢—1,

dl

@Tl(ljo)zo fOI' l:O,l,
Since Ti(x) is analytic, it follows that Ti(x) = 0. This contradicts (4.47), and implies
that on the positive half real line there exists no common zero of T1(x), Ta(x), - - -, and

T,(z). Consequently, (4.48) holds in 0 < x < M for any finite M.

4.4. Uniform asymptotic expansion. With all the preliminary preparation done for
the special case (4.21), we can now establish that the formal expansion (4.16) is in fact
a uniform asymptotic expansion.

THEOREM 2. Let a,(0) and z,(0) be defined as in (4.1). If zx(0) = e for some
constants sy, then for 8 € [0,v],v = 11<nkn<1 {m/|sk|}, we have
SRG

m—1
1-a ﬁk‘,l(g)

—0 ZTl (nf) ; T e(.m), (4.53)
where the coefficients By (6) are given iteratively by (4.6), (4.14) and (4.15), and the
error term (0, m) is expressed explicitly in (4.10), (4.17)-(4.20). Furthermore, there
exist constants My such that

|Bra(0)] < M0 (4.54)
fortl=1,2,--- ,qgand k=0,1,---, and
AR~
(0, m)| < M= ; Ty (nb)], (4.55)
q
form = 1,2,---. Here a= Zak, My is a positive constant, independent of 6 for

k=1
6 € 0,7 —96],6 >0, and T;(nb) is defined in (4.7).
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The proof of this theorem is essentially the same as that given in the previous section,
and the discussion is always divided into two cases: i) n# is bounded, and ii) nf — +o0,
with (4.48) and (4.44) replacing (3.22) and (3.23), respectively.

Fields’ case (cf. [6] and equation (1.2) in this paper) takes place when

g=3; s51=0, 00 =X; s90=1, ap=4; s3=-1, az= A, (4.56)

which is of course a special case of Theorem 2. The integrals T;(x) in this case are given

by
1
Ti(z) = — / s (s? 1) 2e™ds, 1=1,2 and 3,
27 Jr

and they can be expanded into series of the form

i (A (—a?/4)"
PA+2A =14+ 1) &= (A +2A =1+ 1)/2), (A +2A = 1 +2)/2), kI

k=0

x>\+2A—l

In terms of the generalized hypergeometric function, we have
A28l

A+2A—1+1)

A28 -1 +1 A+2A -1 +2  2?

1F2 (A7 9 ’ 2 ) _Z> (457)

Tia) = 5

forl=1,2, and 3.

5 EXAMPLES AND EXTENSIONS

Many known orthogonal polynomials can be defined in terms of their generating
functions. If the generating function happens to be of the form given in (2.1) or (4.1),
then the results presented in this paper are of course immediately applicable. As a simple
illustration, we consider the ultraspherical polynomial Pﬁ) (z) defined by

(e — 2)(e ¥ — 2)] 2= Z PY(cos 0)2". (5.1)

Clearly, Corollary 1 applies here, with & = A and a,(0) = P,g’\)(cos 0). In view of (3.7)
and Lemma 1, the coefficients &y (6) and £i(6) in the asymptotic expansion (3.6) can be
written as

&(0) = %QLM /C A(s,0)ho(s, 0)ds (5.2)
and
Bu(0) = —%2% /C Bu(s, 0)ho(s, 0)ds, (5.3)
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k=0,1,2,---, where C is as before a closed contour enclosing s = %i (see Figure 2).
The rational functions Ax(s,d) and By(s,8) are given in (3.11) - (3.13); in particular,
we have

5 1
Aol 0) = Bl 6) = 7 -
1 1 2(ar — 1)s? 1(2(a—1)s '
Ai(s,0) = = Bi(s,0) = ¢ ——= 5.
1(s, ) 9{32+1+ (52 + 1) } 1(s,6) e{(52+1)2
Since f(z,0) =1 in (2.1), the function hg(s,8) in (2.9) becomes
o0 _ o0 o0 _ b =A
ho(s,0) = : 5.5
N E=nC=="] )
Replacing « by A in (5.2) and (5.3), we obtain by straightforward calculation
_ VT [sinf\ ~ VT [sind\ |
0) = —— A6 0)=—=— A0
O[()( ) F(/\) 0 CoS ) 60( ) F(/\) 0 s ’
N VT [(sind\ " (A—1[ 6Ocosd —sinb . sin A0
_ — 2
a1(0) T A 7 5 Tong St A +2cos M| + 7
and \
~ Vol sinf\ " [0cosf —sinf _
= ——— - 1 2 b
£1(0) ey 2)\()\ ) 7 Temg o8 A0 4 2sin A0
As a second example, suggested in Fields [6], we consider the polynomials
SO (@) =y A (). (5.6)
k=0
The generating function of these polynomials is given by
(1=2) (e —2)(e ™ = 2)] =) SN (cosh)z" (5.7)

n=0

for |z] < 1. This is clearly a special case of (1.2), and Theorem 2 applies with a,(0) =
ST(L)\)(COS 0),q=3,s1 =0,s9 =1and s3 = —1. Furthermore, we have a; = 1,05 = a3 = A
and f(z,8) = 1. Hence, & = 1+ 2X in (4.53). The approximants T;(nf),l = 0,1, 2,
can be expressed in terms of the Gauss hypergeometric function, as is done in (4.57).
To evaluate the coefficients Fx;(f) in the asymptotic expansion, we first note that the
function hq(s, 6) in (4.6) is given by

1— e 0 -1 pl0 _ o0 =A o0 _ o0 =A
h°<8"9)_( 50 ) <¢9+39> (—2’9+50> ' (58)
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Also, from (4.30) we have

1 1 1
Aoi(s,0) = 3’ Aopa(s,0) = 211 Aps(s.0) = m
Moreover, it follows from (4.29) that
1 2\ 12X —1)s*+1 12(A—1)
A 0)=-—— A12(s,0) = — A13(s,0) = ———F=.
1(s,0) 0s24+1’ 1.2(5,9) 0 s(s2+1)2 7 13(5,9) 0 (s> +1)2

Using (4.28), we obtain

wo=(537) 7 waor= () () oy

= () () ()t e

The next set of coefficients 3, (6),l = 1,2, 3, can be derived from (4.33), and they are
given by

and

1
Bra(0) = —br1260 " Bo2(0) — bi1307 " Bos(0) + 9 / Ay 1(s,0)ho(s,0)ds,
c
1
12(6) = ~b12a 0 Fual0) + 5 [ Ara(s,0)ho(s. O, (59)
c
1
() = — [ A
Bi,3(0) i /c 13(8,0)ho(s, 0)ds,

where C is a simple closed curve enclosing s = 0 and s = 4. From the formula following
(4.33), we get

b1z =2, bris =0, biag=2\—1.

The three integrals in (5.9) can be evaluated by using residue theory (or Maple), and the
results are very complicated. However, straightforward calculation shows that 3, ,(0) =

0, and one can verify that the first few coefficients in the Maclaurin expansions of 3 2(6)
(o] (o]

and (31 3(#) vanish. Indeed, we have (3 »(0) = Z*Hk and (31 3(0) = Z*H’“, thus showing
k=1 k=2
that the estimates in (4.54) hold for £ =0 and k = 1.

In Darboux’s original treatment, the singularities are fixed. Hence, only those on the
circle of convergence are of importance. Contributions from the branch points and poles
outside the circle of convergence are exponentially small, in comparison with those from
the points on the circle. However, the situation is changed, when one considers uniform
asymptotic expansions. Singularities not on the circle of convergence may become rele-
vant, when they are allowed to approach the circle. Therefore, more general settings can
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be considered. (This has been suggested by one of the referees.) For example, instead
of the branch points at z = e** in (2.1), one may consider the case where the nearest
singularities are located at z = 1 4 6 with 8 € [0, p|. More generally, we may relax the
restriction |2(0)| = 1 in (4.1), and write 2;(0) = ¢?*+©) with s;(6) being allowed to be
complex. For instance, if z,(6) = 14 dj0, then we may write s;(6) = —% log(1+dxf) and
this function is analytic in . The analysis in Section 4 continues to hold, and one readily
verifies that the function hg(s,#) in (4.6) is still analytic in s and uniformly bounded in
a s-domain of size O(%). Of course, some of the formulas and arguments need minor
modifications. For example, the coefficients of the polynomials in (4.32) are now ana-
lytic functions of #, and so are the coefficients b, ;, in (4.33). However, the definition
of T;(x) remains the same. Since all differentiations and integrations are with respect to
s, analytic functions of 6 can be treated as constants, and most of the derivations and
estimations given in this paper can be extended to the more general setting mentioned

above.

Acknowledgement. The authors would like to thank the referees for a very careful reading
of the manuscript and many constructive suggestions.
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