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LECTURE II

METHOD OF STEEPEST DESCENT

He (Debye) found a very powerful technique for evaluating some integrals · · · . (This
invention) required only a clear picture of the relevant feature of the mathematical
object (not its abstraction) and a willingness to discard that which was not essential
to the task [my italics].

G. F. Carrier

1. Introduction

By name, this is probably the best known method for finding the asymp-
totic behavior of integrals of the form

I(λ) =
∫

C

g(z)eλf(z)dz, (1.1)

where f(z) and g(z) are analytic functions, λ is a large parameter and C
is a contour in the z-plane. However, it is probably also the one which is
least understood by non-specialists. Excellent survey-type articles have been
written on this subject; here we mention only the following two: Wyman [17]
and Olver [8].

Debye devised this method in 1909 in order to derive asymptotic expansions
of Bessel functions of large order. His basic idea is to deform the contour C
into a new path of integration C ′ so that the following conditions hold:

(i) C ′ passes through one or more zeros of f ′(z);
(ii) the imaginary part of f(z) is constant on C ′.

To obtain a geometric interpretation of the new path of integration, we
write

f(z) = u(x, y) + iv(x, y),

where z = x+iy and u and v are real. If u is treated as a third axis orthogonal
to both x and y, then the equation u = u(x, y) defines a surface S in the
(x, y, u) space. Suppose that z0 = x0 + iy0 is a zero of f ′(z). Then, by the
Cauchy-Riemann equation, f ′(z) = ux − iuy. Thus, f ′(z0) = 0 implies

ux(x0, y0) = uy(x0, y0) = 0,

i.e., (x0, y0) is a critical point of u(x, y). Since u is a harmonic function, u(x, y)
cannot have a maximum or a minimum at an interior point. Therefore, (x0, y0)
must be a saddle point of u(x, y). For this reason, we call z0 a saddle point of
f(z).
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The shape of the surface S on the (x, y) plane can be represented by
drawing the level curves on which u is constant. The curves v = constant are
the orthogonal trajectories of the level curves, but so are the projections of the
paths of steepest ascent or descent on the surface. The term steepest descent
stems from condition (ii) above.

We suppose that it is possible to deform the original path of integration
into a steepest path v(x, y) = constant = Im f(z0). On this path, we have

f(z) = f(z0) − τ, (1.2)

where τ is real and is either monotonically increasing or monotonically de-
creasing. The integrand in (1.1) becomes g(z)eλf(z0)−λτ . On a path where
τ → −∞, the integral may be divergent. For this reason we choose paths on
which τ is positive and increasing. These are the paths of steepest descent
from saddle points. We suppose that the original path of integration C in
(1.1) can be deformed into an equivalent path consisting of paths of steepest
descent through a saddle point. Then our problem is reduced to finding the
asymptotic behavior of integrals of the form

eλf(z0)

∫ ∞

0
g(z)

dz

dt
e−λτdτ. (1.3)

The above brief explanation of the method of steepest descent will be made
clearer by the example of Airy’s integral given in Sec. 2. The results for Airy’s
integral will be used to illustrate the Stokes phenomenon in Sec. 3. In Sec. 4,
we present a modified version of the steepest descent method introduced by
Berry and Howls [5] in 1991. The final two sections contain a brief introduction
to a sub-area of asymptotics which is now known as exponential asymptotics.

2. The Airy Integral

This integral is defined by

Ai(z) =
1

2πi

∫

L
exp

(
1
3
t3 − zt

)
dt, (2.1)

where L is any contour which begins at infinity in the sector −1
2π < arg t <

−1
6π and ends at infinity in the sector 1

6π < arg t < 1
2π. To transform it into

the form given in (1.1), we first assume that z is real and positive, and then
make the change of variable t = z1/2u. This gives

Ai(z) =
z1/2

2πi

∫

L
exp

{
z3/2

(
1
3
u3 − u

)}
du.

Once this identity has been established, the restriction on z can be removed
by using analytic continuation. Put

ξ =
2
3
z3/2 and f(u) =

1
2
(u3 − 3u) (2.2)
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so that

Ai(z) =
1

2πi

(
3
2
ξ

)1/3 ∫

L
eξf(u)du. (2.3)

The saddle points of f(u) are at u = ±1. Clearly, f(±1) = ∓1. If we write
u = s + it, then we have

f(u) =
1
2
[(s3 − 3st2 − 3s) + i(3s2t − t3 − 3t)].

Since Im f(±1) = 0, Im f = 0 implies either t = 0 or t2−3s2+3 = 0. On t = 0,
we have Re f = 1

2(s3 − 3s), which has a local minimum at s = 1 and a local
maximum at s = −1. Thus, near s = 1, t = 0 is a steepest ascent curve. The
other equation t2−3s2+3 = 0 represents two branches of a hyperbola with the
asymptotes t = ±

√
3s. On this hyperbola, Re f = −4s3 + 3s, which decreases

for s > 1. From Figure 1, it is clear that the branch of the hyperbola on the
right half plane is our desired path of steepest descent through the saddle point
u = 1. (In Figure 1, arrows indicate the direction in which Re f decreases.)

Deforming the original contour L into this path of steepest descent, we can
write

Ai(z) =
1

2πi

(
3
2
ξ

)1/3(∫ ∞eiπ/3

1
−

∫ ∞e−iπ/3

1

)
eξf(u)du. (2.4)

In both integrals above, f(u) − f(1) is real and has a maximum at u = 1.
Also, f(u) − f(1) is decreasing as u moves away from u = 1. Set

iπ/3e

−iπ/3e∞

∞

11−

Figure 1. Steepest paths for Ai(z)
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τ = f(1) − f(u) = −1 +
3
2
u − 1

2
u3 = −3

2
(u − 1)2 − 1

2
(u − 1)3. (2.5)

On our steepest descent path, τ is real; cf. Eq. (1.2). From (2.5), we have

±i

(
2
3
τ

)1/2

= (u − 1)
[
1 +

1
3
(u − 1)

]1/2

,

where [· · · ]1/2 is that branch which reduces to 1 at u = 1. By Lagrange’s
formula for the reversion of series

u± = 1 +
∞∑

n=1

an

[
±i

(
2
3
τ

)1/2]n

,

where

an =
1
n!

dn−1

dun−1

[
1 +

1
3
(u − 1)

]−n/2∣∣∣∣
u=1

.

Since u+ enters the first quadrant for increasing τ , we must take u+ for the
first integral in (2.4). Similarly, we take u− for the second integral there.
Equation (2.4) then becomes

Ai(z) =
1

2πi

(
3
2
ξ

)1/3

e−ξ

∫ ∞

0

(
du+

dτ
− du−

dτ

)
e−ξτdτ. (2.6)

Since nan is the coefficient of (u−1)n−1 in the Taylor expansion of
[
1+

1
3
(u−

1)
]−n/2 at u = 1, it is easily shown that

an =
(−1)n−1Γ

(
3
2n − 1

)

n! Γ
(

1
2n

)
3n−1

. (2.7)

From this, it follows that

du+

dτ
− du−

dτ
= 2i

∞∑

m=0

(−1)mΓ
(
3m + 1

2

)(
m + 1

2

)

(2m + 1)! Γ
(
m + 1

2

)
9m

(
2
3

)m+ 1
2

τm− 1
2 .

Termwise integration gives

Ai(z) ∼ 1
2πz1/4

exp
(
−2

3
z3/2

) ∞∑

m=0

(−1)mΓ
(
3m + 1

2

)

(2m)! 9m
z−3m/2 (2.8)

as z → ∞ in | arg z| < 1
3π.

The sector of validity of (2.8) can be extended to | arg z| < π by rotating
the path of integration in (2.6). This way of extending the region of validity
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is frequently used in asymptotics; see, e.g., [12, p.26]. However, the result in
(2.8) can not be valid in a wider sector, since Ai(z) is a single-valued function
while the factor multiplying the infinite series in (2.8) is not. In fact, from
(2.1), it can be shown that Ai(z) has the Maclaurin expansion

Ai(z) = 3−2/3

[ ∞∑

n=0

z3n

32nn! Γ
(
n + 2

3

) − 3−2/3
∞∑

n=0

z3n+1

32nn! Γ
(
n + 4

3

)
]
; (2.9)

that is, Ai(z) is an entire function. The material in this section is taken from
[12, Chap. II, Sec. 4], where more examples can be found on the method of
steepest descent.

3. Stokes’ Phenomenon

From (2.1), it can be shown that Ai(z) is a solution of

d2w

dz2
− zw = 0. (3.1)

Clearly, Ai(wz) and Ai(w2z) are also solutions of this equation, where w =
e2πi/3. Using Cauchy’s theorem, it can also be shown that the three solutions
are connected by the relation

Ai(z) + wAi(wz) + w2Ai(w2z) = 0. (3.2)

If π/3 < arg z < 5π/3, then −π/3 < arg(w−1z) < π and −π < arg(w−2z) <
π/3. From (2.8) and (3.2), it follows that

Ai(z) ∼ 1
2πz1/4

exp
(
−2

3
z3/2

) ∞∑

m=0

(−1)mΓ
(
3m + 1

2

)

(2m)! 9m
z−3m/2

+
i

2πz1/4
exp

(
2
3
z3/2

) ∞∑

m=0

Γ
(
3m + 1

2

)

(2m)! 9m
z−3m/2

(3.3)

as z → ∞ in π/3 < arg z < 5π/3. If we let u±(z) denote the formal series

u±(z) =
1

2πz1/4
exp

(
±2

3
z3/2

) ∞∑

m=0

(±1)mΓ
(
3m + 1

2

)

(2m)! 9m
z−3m/2, (3.4)

then (2.8) and (3.3) can be written, respectively, as

Ai(z) ∼ u−(z) (3.5)

as z → ∞ in −π < arg z < π and.

Ai(z) ∼ u−(z) + iu+(z) (3.6)

as z → ∞ in π/3 < arg z < 5π/3.
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Note that both results (3.5) and (3.6) are valid in the common sector π/3 <
arg z < π, and that there is no inconsistency since the first term on the right-
hand side of (3.6) is dominant (exponentially increasing) and the second term
is recessive (exponentially decreasing) in the sector π/3 < arg z < π. However,
the roles of these two terms are interchanged in the sector −π/3 < arg z < π/3;
hence it is mandatory to drop u+(z) from the asymptotic expansion of Ai(z).
By introducing a constant (coefficient) C, which is 0 for arg z ∈ (−π/3, π/3)
and i for arg z ∈ (π/3, 5π/3), the two results in (3.5) and (3.6) can be combined
into one, namely

Ai(z) ∼ u−(z) + Cu+(z) (3.7)

as z → ∞ in arg z ∈ (−π, 5π/3). The coefficient C is called a Stokes multiplier,
and is domain dependent. The discontinuous change of the coefficient C,
when the argument of z changes in a continuous manner, is known as Stokes’
phenomenon.

Returning to (3.4), we let

S+(z) =
2
3
z3/2 and S−(z) = −2

3
z3/2.

It can be verified that the behavior of u+(z) and u−(z) are most unequal on
the curves

Im{S+(z) − S−(z)} = 0 (3.8)

and they are nearly equal on the curves given by

Re{S+(z) − S−(z)} = 0. (3.9)

The curves given in (3.8) and (3.9) are known, respectively, as the Stokes and
anti-Stokes lines. In the case of the Airy function, it is easily seen that the
rays arg z = 0,±2π/3 are the Stokes lines and the rays arg z = ±π/3,±π are
the anti-Stokes lines.

Since Ai(z) on the left-hand side of (3.7) is an analytic function, it is
rather undesirable to have a discontinuous coefficient C on the right-hand
side of the equation. In 1989, Berry [2] gave a different interpretation of
the Stokes phenomenon. In his view, if one truncates the series u−(z) at an
“optimal” place, then the coefficient of the series u+(z) should be a continuous
function of arg z, instead of a discontinuous constant. We shall illustrate
Berry’s theory with the simple Airy function given in (2.1). Our approach
is based on a modified version of the steepest descent method introduced by
Berry and Howls [4] in 1990. The material in the next two sections is taken
nearly verbatim from Wong [13]. (Permission has been obtained from Kluwer
Academic Publishers.)

4. Adjacent Saddle and Adjacent Contour

In (2.3), we let
θ := arg ξ, (4.1)
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and consider the steepest descent curves

Γ±1(θ) : arg{ξ[f(±1) − f(u)]} = arg{eiθ[f(±1) − f(u)]} = 0, (4.2)

i.e., curves on which Im{ξ[f(±1) − f(u)]} = 0 and Re{ξ[f(±1) − f(u)]} > 0.
Deforming the contour L in (2.3) into Γ1(θ), we obtain

Ai(z) =
e−ξ

2πi

(
3
2
ξ

)1/3 ∫

Γ1(θ)
eξ[f(u)+1]du. (4.3)

If we introduce the notations

I(±1)(ξ) := ξ1/2

∫

Γ1(θ)
eξ[f(u)±1]du, (4.4)

then (4.3) can be written as

Ai(z) =
1

2πi

(
3
2

)1/3

ξ−1/6e−ξI(1)(ξ). (4.5)

In the integral (4.4), we make the change of variable

−τ = ξ[f(u) + 1]. (4.6)

For u ∈ Γ1(θ), τ is real and positive; cf. (4.2). As in (2.5), we now expand
f(u) into a Taylor series at u = 1. Lagrange’s inversion formula again gives

u± = 1 +
∞∑

n=1

an

(
±i

√
2τ

3ξ

)n

, (4.7)

where the coefficients an are given in (2.7). Note that here u is a function of
τ and ξ. By breaking the integration path Γ1(θ) in (4.4) at u = 1, we can
rewrite I(1)(ξ) as

I(1)(ξ) = ξ1/2

∫ ∞

0

[
du+

dτ
− du−

dτ

]
e−τdτ

= ξ−1/2

∫ ∞

0

[
1

f ′(u−(τ))
− 1

f ′(u+(τ))

]
e−τdτ ;

(4.8)

cf. (2.6).
The first step in the Berry-Howls method [5] is to use Cauchy’s residue

theorem to represent the integrand in (4.8) as a contour integral. To see this,
we let C1(θ) be a positively oriented curve surrounding the steepest-descent
path Γ1(θ). Since Γ1(θ) is an infinite contour, C1(θ) actually consists of two
infinite curves embracing Γ1(θ); see Figure 2. We now recall the formula

Res
{

Q(u)
P (u)

; u0

}
=

Q(u0)
P ′(u0)

,
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where P (u) and Q(u) are analytic functions with P (u0) = 0, P ′(u0) 6= 0 and
Q(u0) 6= 0. Take P (u) ≡ ξ[−1 − f(u)] − τ, Q(u) ≡ [−1 − f(u)]1/2 and
u0 = u±(τ). Then

Q(u±(τ))
P ′(u±(τ))

= Res
{

Q(u)
P (u)

; u±(τ)
}

=
1

2πi

∫

C±

Q(u)
P (u)

du, (4.9)

Γ1

1

(θ)

.

.

.

u (τ)−

u (τ)+

C−

(θ)

1=u (0)+

+

−

C

C

Figure 2. Contour C1(θ).

where C+ and C− are the two closed contours shown in Figure 2. Since
Q(u±(τ)) = (τ/ξ)1/2 and P ′(u±(τ)) = −ξf ′(u±(τ)), it follows from (4.9) that

1
f ′(u−(τ))

− 1
f ′(u+(τ))

=
1

2πi

ξ3/2

τ1/2

∫

C1(θ)

[−1 − f(u)]1/2

ξ[−1 − f(u)] − τ
du. (4.10)

Inserting (4.10) into (4.8), we get a double integral for I(1)(ξ). Upon inter-
changing the order of integration, we obtain

I(1)(ξ) =
1

2πi

∫

C1(θ)
[−1 − f(u)]−1/2

∫ ∞

0

e−τ τ−1/2

1 − {τ/ξ[−1 − f(u)]}
dτdu. (4.11)

The geometric series
1

1 − x
=

N−1∑

s=0

xs +
xN

1 − x

then gives the asymptotic expansion

I(1)(ξ) =
N−1∑

s=0

csξ
−s + RN (ξ), (4.12)
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where

cs =
Γ
(
s + 1

2

)

2πi

∫

C1(θ)
[−1 − f(u)]−s− 1

2 du (4.13)

and

RN (ξ) =
ξ−N

2πi

∫ ∞

0
e−τ τN− 1

2

∫

C1(θ)
[−1 − f(u)]−N− 1

2

× 1
1 − {τ/ξ[−1 − f(u)]}

dudτ.

(4.14)

The coefficients cs can be evaluated exactly, and we have

cs = i
(−1)sΓ

(
3s + 1

2

)

(2s)! 9s

(
3
2

)−s− 1
2

. (4.15)

The second important step in the Berry-Howls method is to consider all
steepest descent paths Γ1(θ) passing through u = 1 for different values of θ;
see Figure 3. Since f(1) − f(−1) = −2, the path

Γ1(π) : arg{eiπ[f(1) − f(u)]} = 0 (4.16)

runs into the saddle point u = −1. Berry and Howls called u = −1 an adjacent
saddle of u = 1, and the steepest-descent path

Γ−1(π) : arg{eiπ[f(−1) − f(u)]} = 0 (4.17)

an adjacent contour. Deforming the contour C1(θ) in (4.14) into Γ−1(π), we
obtain

RN (ξ) =
ξ−N

2πi

∫ ∞

0
e−τ τN− 1

2

∫

Γ−1(π)
[−1 − f(u)]−N− 1

2

× 1
1 − {τ/ξ[−1 − f(u)]}

dudτ.

(4.18)

In the last equation, we make the change of variable

τ = t
f(1) − f(u)

f(1) − f(−1)
; (4.19)

recall that f(1) = −1. Since

f(1) − f(u)
f(1) − f(−1)

= 1 +
f(−1) − f(u)
f(1) − f(−1)

, (4.20)

and since the quotient on the right-hand side is real and positive when u ∈
Γ−1(π), the quotient on the left-hand side is also real and positive for u ∈
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Γ−1(π). Dingle [7] called the quantity f(1) − f(−1) a singulant; see also [4].
Substituting (4.19) in (4.18), and making use of (4.20), we obtain

RN (ξ) =
ξ−N

2πi
(−2)−N− 1

2

∫ ∞

0
e−ttN− 1

2

(
1 +

t

2ξ

)−1

×
∫

Γ−1(π)
exp

{
−t

f(−1) − f(u)
f(1) − f(−1)

}
dudt.

(4.21)

O

31
32

1
2

31
32

7
8

3
4

1
2

1
4

1

−1

θ = π

θ = − −π θ = − −π

θ = −π
θ = −π
θ = −π

θ = −π

θ = −π

: θ = 0Γ (0)

Γ  (π)

Figure 3. Contours Γ1(θ),−π < θ < π

In the inner integral, we write u = −w. Since f(u) is an odd function and
f(1) − f(−1) = −2, it follows that

∫

Γ−1(π)
exp

{
−t

f(−1) − f(u)
f(1) − f(−1)

}
du = −

∫

Γ1(0)
exp

{
t

2
[f(w) − f(1)]

}
dw.

The last integral can be expressed in terms of the integral I(1)(ξ) given in
(4.4). Indeed, we have

∫

Γ−1(π)
exp

{
−t

f(−1) − f(u)
f(1) − f(−1)

}
du = −

(
t

2

)−1/2

I(1)

(
t

2

)
. (4.22)

Inserting (4.22) into (4.21) gives

RN (ξ) =
1
2π

(−2ξ)−N

∫ ∞

0
e−ttN−1

(
1 +

t

2ξ

)−1

I(1)

(
t

2

)
dt. (4.23)
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Equations (4.12) and (4.23) coupled together is known as a resurgence formula,
since the integral I(1)(ξ) on the left-hand side of (4.12) appears again in the
remainder term RN(ξ) given in (4.23).

5. Exponential Asymptotics

To estimate the remainder term in (4.12), we first use the double integral
representation of RN (ξ) given in (4.18). For convenience, we introduce the
function

csc1(ϕ) =




|cscϕ| if 0 < |ϕ| <

π

2
,

1 if
π

2
≤ |ϕ| ≤ π.

(5.1)

It can be readily verified that if ζ = |ζ|eiϕ then
∣∣∣∣

1
1 − ζ

∣∣∣∣ ≤ csc1(ϕ). (5.2)

We extend csc1(ϕ) into a 2π-periodic function by defining

csc1(ϕ + 2π) = csc1(ϕ). (5.3)

Since this is an even function, it is unbounded at 0,±2π,±4π, · · · . Take ζ =
τ/ξ[−1 − f(u)], and note that arg ζ = −π − θ. By (5.2), we have

∣∣∣∣1 − τ

ξ[−1 − f(u)]

∣∣∣∣
−1

≤ csc1(π + θ) (5.4)

for u ∈ Γ−1(π). A direct application of (5.4) to (4.18) yields

|RN (ξ)| ≤ AN

|ξ|N
csc1(θ + π), (5.5)

where AN is a constant given by

AN =
Γ
(
N + 1

2

)

2π

∫

Γ−1(π)

∣∣[−1 − f(u)]−N− 1
2 du

∣∣. (5.6)

There is another error estimate which is probably easier to compute. We
first note that I(1)(ξ) = R0(ξ); see (4.12). Hence, by (5.5),

∣∣∣∣I(1)

(
t

2

)∣∣∣∣ ≤ A0csc1(π). (5.7)

Next, we return to (4.23). With ζ = −t/2ξ, we have from (5.2)

|RN (ξ)| ≤ BN

|ξ|N
csc1(π − θ), (5.8)
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where
BN =

A0Γ(N)
2N+1π

. (5.9)

Since the function csc1(ϕ) is unbounded at ϕ = 0,±2π,±4π, · · · , both bounds
in (5.5) and (5.8) break down when θ = ±π,±3π,±5π, · · · .

To obtain an error estimate near the Stokes lines θ = ±π, or equivalently,
arg z = ±2

3π, we use a device suggested by Boyd [6]. Rotating the path of

integration in (4.23) by an angle η ∈
(
−π

2
, 0

)
gives

RN (ξ) =
1
2π

(−2ξ)−N

∫ ∞eiη

0
e−ttN−1

(
1 +

t

2ξ

)−1

I(1)

(
t

2

)
dt. (5.10)

On the path of integration in (5.10), we have arg t = η. Hence, by (5.5),
∣∣∣∣I(1)

(
t

2

)∣∣∣∣ ≤ A0csc1(η + π) = A0; (5.11)

see (5.7). The equality in (5.11) follows from the fact that
π

2
< η +π < π. On

the other hand, we also have from (5.2)
∣∣∣∣1 +

t

2ξ

∣∣∣∣
−1

≤ csc1(π + η − θ). (5.12)

A combination of (5.10), (5.11) and (5.12) yields

|RN (ξ)| ≤ C

(2|ξ|)N
csc1(π + η − θ)

Γ(N)
(cos η)N

, (5.13)

where C = A0/2π.

If 0 < θ < π and θ is close to π, then for any sufficiently small η ∈
(
−π

2
, 0

)

we have −π

2
< π+η−θ < 0. Similar, if −π < θ < 0 and θ is close to −π, then

for any sufficiently small η ∈
(
−π

2
, 0

)
we have

3π

2
< π + η − θ < 2π. Since

the function csc1(ϕ) defined in (5.1) and (5.3) is 2π-periodic, from (5.13) we
obtain

|RN (ξ)| ≤ C

(2|ξ|)N

1
| sin(±π + η − θ)|

Γ(N)
(cos η)N

, (5.14)

where + sign is taken when θ ↗ π and − sign is taken when θ ↘ −π. As
θ → ±π, we have sin(±π + η − θ) ∼ sin η. Since η is arbitrary, we may choose
it so that

cos η ∼
(

1 − 1
N

)
and sin η ∼

√
2
N

.



13

Thus, for θ near ±π, we can find a constant C1 such that

|RN (ξ)| ≤ C1

(2|ξ|)N

√
N

2

(
1 − 1

N

)−N

Γ(N).

(An explicit value for C1 can be given if desired.) Since 1
x log(1 + x) ≤ 1

1+x

for negative values of x, we have
(
1 − 1

N

)−N ≤ eN/(N−1). This together with
the inequality [1]

Γ(N) <
√

2πNN− 1
2 e−N+(1/12N) (5.15)

gives the estimate

|RN (ξ)| ≤ C2e
N(−1+log N−log |2ξ|), (5.16)

where C2 =
√

πe2C1. The minimum value of the exponential function on the
right-hand side of (5.16) is attained when

d

dN
(−N + N log N − N log |2ξ|) = log N − log |2ξ| = 0.

Therefore, an optimal place to truncate the series in (4.12) is near

N = N∗ := 2|ξ|.

With N given by this value, (5.16) yields

|RN (ξ)| ≤ C2e
−2|ξ|, (5.17)

as |ξ| → ∞, where arg ξ = θ is close to the Stokes lines θ = ±π. Applying
(5.15) to the error estimate (5.8), one readily sees that inequality (5.17) holds
also for ξ away from the Stokes line. Olver [9] called the expansion (4.12) with
error estimate (5.17) a uniform, exponentially improved, asymptotic expansion
in the sector |ξ| ≤ π. Optimatically truncated asymptotic expansions are also
called super-asymptotic expansions by Berry and Howls [4]; see also [3].

6. Hyperasymptotics

Returning to (4.23), we now replace the function I(1)(t/2) by its asymptotic
expansion (4.12). Termwise integration gives a series of integrals which can
be expressed in terms of Dingle’s terminant function

∫ ∞

0

tk−1e−t

1 + t/ζ
dt := 2πi(−ζ)keζTk(ζ); (6.1)

see Olver [9]. More precisely, we have

RN (ξ) = ie2ξ
N ′−1∑

r=0

(−1)r cr

ξr
TN−r(2ξ) + RN,N ′(ξ), (6.2)
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where

RN,N ′(ξ) =
1
2π

(−2|ξ|)−N

∫ ∞

0
e−ttN−1

(
1 +

t

2ξ

)−1

RN ′

(
t

2

)
dt. (6.3)

The idea of re-expanding the remainder terms in optimally truncated asymp-
totic series was introduced by Berry and Howls [4], and they called this theory
hyperasymptotics.

With arg ζ = φ, u = t/|ζ|, and k = |ζ|+α, α being a positive and bounded
quantity, the integral in (6.1) can be written as

∫ ∞

0

tk−1e−t

1 + t/ζ
dt = |ζ|k

∫ ∞

0

uα−1e−|ζ|(u−log u)

1 + e−iφu
du.

The integrand on the right-hand side has a pole at u = −eiφ, which coalesces
with the saddle point at u = 1 when φ = ±π. An existing theory on uniform
asymptotic expansions (see [12, pp. 356-358]) can now be used to show that
as |ζ| → ∞,

Tk(ζ) ∼ 1
2
erfc(Z) − i√

2π|ζ|
e−Z2

∞∑

s=0

(
1
2

)

s

g2s(φ, α)
(

2
|ζ|

)s

(6.4)

uniformly with respect to φ ∈ [−π+δ, 3π−δ], where erfc is the complementary
error function, Z := c(φ)

√
|ζ|/2, and

1
2
[c(φ)]2 := −ei(φ−π) + i(φ − π) + 1.

Near φ = π, the Taylor series of c(φ) begins

c(φ) = −(φ − π) − i

6
(φ − π)2 +

1
36

(φ − π)3 + · · ·

The coefficients g2s(φ, α) can be given explicitly and the first one is

g0(φ, α) =
eiα(π−φ)

1 + e−iφ
− i

c(φ)
.

This result is taken from Olver [9]. He has shown that Z lies in the sector
−1

4π < arg Z ≤ 0 when −π ≤ φ ≤ π, and in the sector 0 ≤ arg(−Z) ≤ 1
4π

when π ≤ φ ≤ 3π. As φ increases from values below π to values above π, Z
moves from the first sector to the second sector through the origin. Since
erfc(Z) = O(e−Z2

) uniformly throughout the first sector and erfc(Z) = 2 +
O(e−Z2

) uniformly throughout the second sector (see [12, p.42]), if |ζ| is large
and fixed and φ increases continuously from π− to π+, then (6.4) shows that
Tk(ζ) changes rapidly, but smoothly, from being exponentially small to being
exponentially close to one.
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Coupling (4.12) and (6.2) gives

I(1)(ξ) =
N−1∑

s=0

csξ
−s + ie2ξ

N ′−1∑

r=0

(−1)rcrξ
−rTN−r(2ξ) + RN,N ′(ξ). (6.5)

The remainder RN,N ′(ξ) is given in (6.3), and can be estimated as before. Of
course, it is expected to be of lower order of magnitude, and hence can be
neglected. Inserting (6.4) into (6.5), we obtain from (4.5)

Ai(z) ∼ (3/2)1/2

2πi
z−1/4

[
e−ξ

2|ξ|−1∑

s=0

csξ
−s

+
i

2
erfc{c(θ)|ξ|1/2}eξ

N ′−1∑

r=0

(−1)rcrξ
−r

]
,

(6.6)

where ξ = 2
3z3/2. Note that in (6.6), we have truncated the first series at

an optimal place. When θ is near π, erfc{c(θ)|ξ|1/2} will have an abrupt
but smooth change. In Berry’s terminology, this function is called a Stokes
multiplier. A similar result holds for θ near −π. We shall call the abrupt but
smooth change Berry’s transition.

Exponential asymptotics of other well known entire functions can be in-
vestigated in a similar manner. However, the analysis could be considerably
more complicated. For instance, in [14] and [15], Wong and Zhao have studied
the Berry transition of the generalized Bessel function

φ(z) =
∞∑

n=0

zn

Γ(n + 1)Γ(ρn + β)
,

where −1 < ρ < ∞ and β is a real or complex number. They have also
discussed the exponential asymptotics of the Mittag-Leffler function [16]

Eα,β(z) =
∞∑

n=0

zn

Γ(αn + β)
, Re α > 0,

where β may again be real or complex. These two entire functions have played
an important role in the study of fractional differential equations [10]; see also
[11].
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