City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2022 / 23

Part I Course Overview

Course Title:	Wastewater Engineering and Water Quality Assessment
Course Code:	SEE8221
Course Duration:	One semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites:	Nil
Precursors:	Nil
Equivalent Courses:	SEE6213 Wastewater Engineering and Water Quality Assessment
Exclusive Courses:	Nil

Part II Course Details

1. Abstract

The course aims to provide students with the fundamental knowledge on wastewater engineering processes as well as the analytical techniques involved in assessing water quality. State-of-the-art processes in wastewater treatment will also be covered in the course.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting	Discov	ery-eni	riched
		(if	curricu	lum rel	lated
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp	riate)	
			A1	A2	A3
1.	Identify and classify the different sources of wastewater	10%	\checkmark		
	and their requirement for treatment depending on their				
	discharge or final utilisation.				
2.	Describe and perform various analysis of water and	20%			
	wastewater quality assessment.				
3.	Design the various physical and chemical unit operations	20%			
	for wastewater treatment.				
4.	Design the various biological unit operations for	20%			
	wastewater treatment.				
5.	Describe the principles of various advanced treatment,	30%			\checkmark
	concepts of water recycling and desalination.				
	· · · · ·	100%			•

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description		CILO No.					Hours/week (if	
	_	1	2	3	4			applicable)	
Lectures	The lectures will cover basic			\checkmark			2	Lectures	
	theories and concepts of								
	wastewater treatment and control								
	methods, techniques and								
	operations of waste treatment								
	plants, and management systems								
	commonly use in Hong Kong.								
Tutorial	Open discussions in tutorial						1	Tutorial	
	sessions will be given to students								
	on engineering calculation								
	procedure and formulation								

	techniques.				
Laboratory	Analysis water quality and	\checkmark			Laboratory
	understand its impact on				
	environment				
Field visit	Recognize the contemporary				Field visit
	technology at national levels in				
	addressing environment problems				
	and issues				
Mini projects	Develop innovative and creative				Mini projects
	solutions to wastewater treatment				
	through teamwork and projects				

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.						Weighting	Remarks
	1	2	3	4	4	5		
Continuous Assessment: _70	%							
Assignments						20		
Project						30		
Quiz						20		
Examination: <u>30</u> % (duration: 2 hours, if applicable)								
							100%	

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
Assignments	Graded assignment in each topic with both calculations and structured problem solving	The student completes all assessment tasks/activities and the work demonstrates excellent understanding of the scientific principles and the working mechanisms	The student completes all assessment tasks/activities and can describe and explain the scientific principles.	The student completes all assessment tasks/activities but can only briefly describe some scientific principles.	The student fails to complete all assessment tasks/activities
Test	Comprehensive paper examination with both calculations and structured problem solving in evaluating student's learning abilities	He/she can thoroughly identify and explain how the principles are applied to wastewater engineering.	He/she provides a detailed evaluation of how the principles are applied to wastewater engineering.	Only some of the analysis is appropriate to show how the principles are applied to wastewater engineering.	He/she fails to identify and explain how the principles are applied to wastewater engineering.
Mini Project	Analyse and provide innovative engineering solution in wastewater treatment	He/she is able to communicate ideas effectively and persuasively via written texts and/or oral presentation.	He/she is able to communicate ideas effectively via written texts and/or oral presentation.	He/she can communicate simple ideas in writing and/or in oral presentations.	He/she is weak in communicating ideas and/or the student's work shows evidence of plagiarism.

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
Assignments	Graded assignment in each topic with both calculations and structured problem solving	The student completes all assessment tasks/activities and the work demonstrates excellent understanding of the scientific principles and the working mechanisms	The student completes all assessment tasks/activities and can describe and explain the scientific principles.	The student completes all assessment tasks/activities and can describe and explain some scientific principles.	The student completes all assessment tasks/activities but can only briefly describe some scientific principles.	The student fails to complete all assessment tasks/activities
Test	Comprehensive paper examination with both calculations and structured problem solving in evaluating student's learning abilities	He/she can thoroughly identify and explain how the principles are applied to wastewater engineering.	He/she provides a detailed evaluation of how the principles are applied to wastewater engineering.	He/she provides simple but accurate evaluations of how the principles are applied to wastewater engineering.	Only some of the analysis is appropriate to show how the principles are applied to wastewater engineering.	He/she fails to identify and explain how the principles are applied to wastewater engineering.
Mini Project	Analyse and provide innovative engineering solution in wastewater treatment	He/she is able to communicate ideas effectively and persuasively via written texts and/or oral presentation.	He/she is able to communicate ideas effectively via written texts and/or oral presentation.	He/she can communicate ideas clearly in written texts and/or in oral presentations.	He/she can communicate simple ideas in writing and/or in oral presentations.	He/she is weak in communicating ideas and/or the student's work shows evidence of plagiarism.

Part III Other Information

1. Keyword Syllabus

- Composition and classification of wastewater
- Analytical techniques in water quality assessment
- Physical unit operations sedimentation, flocculation, flotation
- Chemical unit operations aeration, pH, chlorination, ion exchange
- Biological treatment aerobic/anaerobic treatment, activated sludge, trickling filter
- Membrane bioreactor (MBR)
- Advanced oxidation processes ozone, UV, Fenton, photo-Fenton, photocatalysis
- Water recycling and desalination

2. Reading List

2.1 Compulsory Readings

1.	Metcalf and Eddy /Aecom, Wastewater Engineering: Treatment and Resource Recovery 5th Edition, McGraw-Hill International Edition, 2014.
2.	MIHELCIC, J.R. and ZIMMERMAN, J.J. (2009) Environmental Engineering: Fundamentals, Sustainability, Design. New Jersey: John Wiley & Sons, Ltd.

2.2 Additional Readings

1.	MACKENZIE, D. (2010) Water and Wastewater Engineering. New York: McGraw-Hill, Ltd.
2.	METCALF & EDDY: AECOM, Inc. (2007) Water Reuse: Issues, Technologies, and
	Applications, New York: McGraw-Hill, Ltd.
3.	IZRAIL, S., TUROVSKIY, P. and MATHAI, K. (2006) Wastewater Sludge Processing. New
	Jersey: John Wiley & Sons, Ltd.
4.	RUSSELL, D.L. (2006) Practical Wastewater Treatment. New Jersey: John Wiley & Sons,
	Ltd.