City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester B 2022/23

Part I Course Overview	w
Course Title:	Advanced Thermosciences for Energy Engineering
Course Code:	SEE8130
Course Duration:	One semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites:	Nil
Precursors:	Nil
Equivalent Courses:	Nil
Exclusive Courses:	Nil

Part II Course Details

1. Abstract

This course aims to introduce the concept of thermosciences (including but not limited to thermodynamics and heat transfer) and applies them to a wide range of engineering technologies related to energy. These principles will help the students to build a strong foundation for further innovative studies of energy engineering. Problems-solving in energy engineering would be explored and the skills in critical thinking would be developed.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs#	Weighting (if applicable)	Discovery-enriched curriculum related learning outcomes (please tick where appropriate)		lated omes where
1.	Describe and apply principles of thermosciences in the context of energy engineering (including but not limited to thermodynamics and heat transfer)	40%	<i>A1</i>	<i>A2</i> ✓	A3
2.	Analyse the energy production and consumption processes through case studies in processes and advanced/smart engineering devices.	40%	Ø	Ø	
3.	Apply the principles to problem-solving and designing of new energy systems (not limited to energy generation, utilisation and storage). Use a systems approach to simplify a complex problem.	20%		Ø	
	1	100%		L	<u> </u>

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CILO No.			Hours/week	
		1	2	3		(if applicable)
Lecture	A format of two-third lectures and one-third tutorials will be used to help the students to understand and explore key issues, their underlying theory and the selection of case studies.	Ø	Ø	Ø		2 hours/week
Tutorial	Topic-related tutorials will give the students an opportunity to practice. Mathematical-based and conceptual-based exercises will be used in a blended manner.	Ø	Ø	Ø		1 hour/week
Presentations (Subject to change)	The presentation (oral or written) is designed to develop information literacy skills and to acquire depth of knowledge on selected topics.	Ø	Ø	Ø		

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.					Weighting	Remarks
	1	2	3				
Continuous Assessment:70%							
In-class quizzes			N			20%	
(two quizzes)							
Assignment			N			30%	
(individual-based)							
Presentation in written report	\mathbf{V}		\square			20%	
_							
Examination: <u>30</u> % (duration: 2 hours)							
						100%	

To pass a course, a student must do ALL of the following:

- 1. obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2. obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3. meet the criteria listed in the section on Assessment Rubrics.

5. Assessment Rubrics

Applicable to students admitted in Semester A 2022/23 and thereafter

Asses	sment Task	Criterion	Excellent (A+, A, A-	Good (B+, B)	Marginal (B-, C+, C)	Failure (F)
1.	In-class quizzes	Ability to analyse and solve mathematical- based and conceptual-based problems	High	Significant	Basic	Not even reaching marginal levels
2.	Individual assignment	It is a formative assessment on technical content (knowledge, comprehension, application, analysis) and the ability to engage in a structured way with the course materials.	High	Significant	Basic	Not even reaching marginal levels
3. (Subj	Group presentation ect to change)	Assessed on the basis of quantity and quality of information and the skills demonstrated in analysing a selected topic.	High	Significant	Basic	Not even reaching marginal levels
4.	Final Examination	Summative assessment on the technical accuracy of calculations and clarity of conceptual understanding of topics.	High	Significant	Basic	Not even reaching marginal levels

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. In-class quizzes	Ability to analyse and solve mathematical-based and conceptual-based problems	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Individual assignment	It is a formative assessment on technical content (knowledge, comprehension, application, analysis) and the ability to engage in a structured way with the course materials.	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Group presentation (Subject to change)	Assessed on the basis of quantity and quality of information and the skills demonstrated in analysing a selected topic.	High	Significant	Moderate	Basic	Not even reaching marginal levels
4. Final Examination	Summative assessment on the technical accuracy of calculations and clarity of conceptual understanding of topics.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information

1. Keyword Syllabus

- Advanced Thermodynamics
- Heat Transfer in reactions, devices etc.
- Energy Production and Consumption Process
- Thermal Reaction Engineering
- Separation and Equilibrium

2. Reading List

2.1 Compulsory Readings

- 1. D. Winterbone, A. Turan, Advanced Thermodynamics for Engineers (2nd edition), Elsevier.
- 2. Y. A. Cengel, J. M. Cimbala, R. H. Turner, Fundamentals of Thermal-Fluid Sciences (4th Edition)

2.2 Additional Readings

1.	H. Scott Fogler, M. Nihat Gurmen, Elements of Chemical Reaction Engineering (1st edition),
	Wiley
2.	L. Theodore, Heat Transfer Applications for Practicing Engineer, Wiley.
3.	S. K. Agrawal, Applied Thermosciences: Principles and Applications, Anshan.
4.	Additional Notes from lectures