City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Emerging Energy Technologies
Course Code:	SEE8125
Course Duration:	One semester
Credit Units:	3
Level:	R8
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites:	Nil
Precursors:	Nil
Equivalent Courses:	SEE6118 Emerging Energy Technologies
Exclusive Courses:	Nil

Part II Course Details

1. Abstract

This course aims to provide students with the fundamental knowledge on the emerging energy technologies. This includes technologies that are expected to be the next state-of-the-art in the near future, from innovative clean energy conversion to energy storage. The acquired knowledge shall equip students for the rapidly evolving energy frontiers, and serve as a common ground for potential innovation in these technologies.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs	Weighting	Discov	very-eni	riched
		(if	curricu	lum rel	lated
		applicable)	learnin	g outco	omes
			(nlease	tick	where
			opprop	rioto)	where
				114(0)	4.2
			AI	AZ	A3
1.	Describe basic principles in the conversion of fossil fuel	20%			
	(coal and natural gas) to ultraclean fuel, as well as their				
	importance in the future energy equations; describe the				
	process of carbon capture and storage and its importance in				
	the integration of fossil fuel				
2.	Describe the various means of solar energy conversion from	30%			
	first to third generation photovoltaic solar cells, and				
	photoelectrochemical conversion: describe the working				
	principles of different types of fuel cells.				
3	Describe the principles of energy storage through lithium ion	30%			
5.	batteries and supercapacitors and their advantages: describe	2070	™		
	the principles of hydrogon storage such as motel hydrides				
	the principles of hydrogen storage such as metal hydrides				
	and carbon nanotubes				
4.	Apply the principles to evaluate the performances and	20%			
	challenges in various technologies.				
		100%			
		1	1		

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description		CILO No.					Hours/week
	-	1	2	3	4			(if applicable)
Lecture	Regular lectures to enrich students with the required science fundamentals for the applications of emerging technologies in energy conversion and storage	Ŋ	Ŋ	Ŋ				2 hours/week
Tutorial	Mathematical-based in-class exercise to consolidate the skills of students in designing energy systems based on emerging technologies			V				1 hour/week
Topical Workgroup	In-depth understanding of selected technologies by problem-solving							2 hours/week
Presentation	General presentation to share research findings with classmates							

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.			Weighting	Remarks		
	1	2	3	4			
Continuous Assessment:100%	Continuous Assessment:100%						
Assignment			Ŋ	\mathbf{V}		85%	
Oral presentation			$\mathbf{\nabla}$			15%	
Examination: <u>0</u> % (duration: NA)							
						 100%	

To pass a course, a student must do ALL of the following:

- 1. obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2. obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3. meet the criteria listed in the section on Assessment Rubrics.

5. Assessment Rubrics

	Assessn	nent Task	Criterion	Excellent	Good	Marginal	Failure
				(A+, A, A-)	(B+, B,)	(B-, C+, C)	(F)
ſ	1.	Assignment	Ability to apply mathematical skills in	High	Significant	Moderate to	Not even reaching
			designing energy storage and conversion			Basic	marginal levels
			systems based on emerging technologies				
	2.	Oral presentation	Ability to convey research findings	High	Significant	Moderate to	Not even reaching
			orally in a convincing and systematic			Basic	marginal levels
			manner				

Applicable to students admitted in Semester A 2022/23 and thereafter

Applicable to students admitted before Semester A 2022/23

Assessment Task		Criterion	Excellent	Good	Adequate	Marginal	Failure
			(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1.	Assignment	Ability to apply mathematical skills in designing energy storage and conversion systems based on emerging technologies	High	Significant	Moderate	Basic	Not even reaching marginal levels
2.	Oral presentation	Ability to convey research findings orally in a convincing and systematic manner	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information

1. Keyword Syllabus

Ultraclean fossil fuel conversion:

- Gas-to-liquid conversion
- Clean coal technologies
- Carbon capture and storage

Energy conversion:

- First, second and third generation solar cells
- Photoelectrochemical conversion
- Non-photovoltaic solar fuels
- Hydrogen fuel cells, direct methanol fuel cells, solid oxide fuel cells

Energy Storage:

- Lithium-ion batteries
- Rechargeable (non-lithium) batteries
- Flow batteries
- Supercapacitor
- Hydrogen storage

Other smart energy technologies:

- Advanced electric motors

2. Reading List

2.1 Compulsory Readings

1.	Raimondi, F., Scherer, G. G., Kotz, R., Wokaun, A. Nanoparticles in energy technology: Examples from electrochemistry and catalysis <i>Angew Chem. Int. Ed.</i> 2005 , <i>44</i> , 2190
	Examples from electroenemistry and catalysis, ringew. Chem. Int. La. 2000, 44, 2150.
2.	Somorjai, G. A., Frei, H., Park, J. Y. Advancing the frontiers in nanocatalysis, biointerfaces and
	renewable energy conversion by innovations of surface techniques, J. Am. Chem. Soc. 2009, 131,
	16589.
3.	Kamat, P. V. Meeting the clean energy demand. Nanostructure architectures for solar energy
	conversion, J. Phys. Chem. C, 2007, 111, 2834.
4.	Winter, M., Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004,
	104, 4245.

2.2 Additional Readings

Nil