Course Syllabus

offered by School of Energy and Environment with effect from Semester B 2021/22

Part I Course Overview

	Energy, Environment and Sustainable Development
Course Title:	
	SEE8114
Course Code:	
	One semester
Course Duration:	3
Credit Units:	
Creat Units.	R8
Level:	
	English
Medium of Instruction:	
	English
Medium of Assessment:	
	None
Prerequisites:	
Precursors:	None
r recursors.	
	SEE5114 Energy, Environment and Sustainable Development
Equivalent Courses:	
Englingting Comments	Nil
Exclusive Courses:	

Part II Course Details

1. Abstract

This course aims to develop better understanding of energy and environmental issues with sustainable development. It focuses on raising the awareness of the world's connection to environmental issues, examining the principles and tools for sustainable processes and exploring the methods for reducing the environmental impact. The students will learn about fundamental concepts of sustainability and the methods to evaluate their significance. Sustainable processes in the wider economic, social and environmental contexts will be covered.

The course is designed with an emphasis on interdisciplinary reflection, systems thinking and sharing of students' own experience. The teaching/learning will be supported by video presentations, seminars, web-based resources, site visit and group discussions.

2. Course Intended Learning Outcomes (CILOs)

No.	CILOs [#]	Weighting*	Discov	very-en	riched
		(if	curricu	lum re	lated
		applicable)	learnin	g outco	omes
			(please	e tick	where
			approp	riate)	
			A1	A2	A3
1.	Describe issues relevant to the emergence and ongoing	20			
	development of sustainable processes in the wider				
	economic, social and environmental contexts				
2.	Evaluate the overall techno-economic of sustainable	20	\checkmark		
	processes				
3.	Identify the methodologies available for environmental	20	\checkmark	\checkmark	
	impacts assessment of a process design				
4.	Recognise the context of the drivers, challenges and	20		\checkmark	
	indicators to measure social sustainability				
5.	Describe the basic principles of green energy and	20	\checkmark	\checkmark	
	electrochemical energy process. Explain the important				
	issues and factors affecting the practices of sustainable				
	transportation system.				
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

TLA	Brief Description	CILO No.			Hours/week (if applicable)		
		1	2	3	4	5	
Lecture	Lectures on (1) Sustainable process s; (2) Economics of a Process Design; (3) Environmental Assessment of a Process Design; (4) Circular Economy; (5) Electric Vehicle; (6) Case Studies of green energy	\checkmark	V		V	V	2.5 hours/week
In-class exercises	In-class exercises will be given to students to assess students' concepts and grasp of knowledge taught in class		V	V	V	V	0.5 hour/week
Reading exercises	Reading exercises including reference books, journal papers and related online materials will be provided to students to facilitate self-directed learning.	V	V	\checkmark	V	V	
Mid-term	Mid-term will be arranged to assess students' understanding and ability to apply subject-related knowledge learned in class, textbooks and required reading materials.	V	V	V	V	V	
Examination	Examination will be arranged to assess students' understanding and ability to apply subject-related knowledge learned in class, textbooks and required reading materials.	\checkmark	V	V	V	V	

4. Assessment Tasks/Activities (ATs)

Assessment Tasks/Activities	CILO No.					Weighting*	Remarks	
	1	2	3	4	5			
Continuous Assessment: <u>60</u> %	-	•	•			•	•	
In-class exercises						10%		
Students need to complete								
in-class exercises and								
participate actively in								
discussing these exercises to								
facilitate their understanding of								
knowledge taught in class.								
Case study and oral						20%		
presentation								
Students will work in groups,					1			
prepare and deliver oral					1			
presentation on 'Green energy					1			
conversion and storage'								
Assignments						30%		
One assignment on								
Technoeconomic Study and								
Life Cycle Assessment to								
demonstrate their understanding								
of concepts								
One assignment on Integrated								
Bioprocess Design to								
demonstrate their understanding								
of concepts								
Examination: 40% (duration: 21		1 / * *			,		1	
Examination	\checkmark	\checkmark		\checkmark	\checkmark	40%		
Students will be assessed via					1			
the examination their					1			
understanding of concepts					1			
learned in class, textbooks,								
reading materials, and their								
ability to apply subject-related								
knowledge.								
						100%		

Examination duration: 2 hrs

Percentage of coursework, examination, etc.: 60% by coursework; 40% by exam

To pass a course, a student must do ALL of the following:

- 1) obtain at least 30% of the total marks allocated towards coursework (combination of in-class exercises, case study, oral presentation, if applicable);
- 2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3) meet the criteria listed in the section on Grading of Student Achievement.

5. Assessment Rubrics

• Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Case study and	Ability to analyse green energy system	High	Significant	Moderate	Low
oral presentation	and propose methods to boost energy				
	efficiency				
2.In-class exercises	Ability to apply concepts and theories to	High	Significant	Moderate	Low
	sustainable design of processes in				
	practice				
3. Assignments	Ability to analyse and calculate practical	High	Significant	Moderate	Low
	problems in sustainable processes				
4.Reading exercises	Ability to evaluate and make sensible	High	Significant	Moderate	Low
	comments on reading materials related to				
	the 'Case study' topic.				
5. Mid-term exam	Ability to analyse and calculate practical	High	Significant	Moderate	Low
	problems in energy, environment and				
	sustainability-related issues.				
6. Final exam	Ability to analyse and calculate practical	High	Significant	Moderate	Low
	problems in energy, environment and				
	sustainability-related issues.				

• Applicable to students admitted before Semester A 2022/23,

Assessment Task	Criterion	Excellent	Good	Adequate	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Case study and oral	Ability to analyse green	High	Significant	Moderate	Basic	Not even reaching
presentation	energy system and propose methods to boost energy efficiency					marginal levels
2. In-class exercises	Ability to apply concepts and theories to sustainable design of processes in practice	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Assignments	Ability to analyse and calculate practical problems in sustainable processes	High	Significant	Moderate	Basic	Not even reaching marginal levels
4. Reading exercises	Ability to evaluate and make sensible comments on reading materials related to the 'Case study' topic.	High	Significant	Moderate	Basic	Not even reaching marginal levels
5. Mid-term exam	Ability to analyse and calculate practical problems in energy, environment and sustainability-related issues.	High	Significant	Moderate	Basic	Not even reaching marginal levels
6. Final exam	Ability to analyse and calculate practical problems in energy, environment and sustainability-related issues.	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information

1. Keyword Syllabus

- Unit operation and process flow sheet
- Techno-economic evaluation
- Life cycle assessment of sustainable chemical processes
- Social economic impact
- Social sustainability
- Green Transportation

Electrochemical Energy conversion & storage

2. Reading List

2.1 Compulsory Readings

1.	Technology for Biobased Products
	Online course by Delft University of Technology (TU Delft)
	https://www.edx.org/course/technology-biobased-products-delftx-tbp01x#.VJ6LVrAQ
2.	Circular Economy: an introduction
	Online course by Delft University of Technology (TU Delft)
	https://www.edx.org/course/circular-economy-an-introduction
3.	Municipal Solid Waste Management in Developing Countries
	Online course by École Polytechnique Fédérale de Lausanne
	https://www.coursera.org/learn/solid-waste-management

2.2 Additional Readings

The following are reference books and documents useful for the students in this course. Additional reference sources on the course topics will be provided over the course. Students may also find other information and Internet resources on the course website in Canvas.

1.	Study on Sustainable Development for the 21st Century (SUSDEV21) http://www.pland.gov.hk/pland_en/p_study/comp_s/susdev/ex_summary/final_eng/ch5.htm
2.	Perry RJ and Green JH. (2007) Perry's chemical engineer's handbook, 8 th edition, McGraw-Hill, New York.
3.	Sinnott, R.K., Towler, G. (2009) Chemical Engineering Design 5th ed. Elsevier/Butterworth-Heinemann.
4.	Peters MS, Timmerhaus KD and West RE. (2003) Plant design and economics for chemical engineers. 5th edition, McGraw Hill, New York.
5.	Sadhkhan J, Ng, KS and Martinez, E. (2014) Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis. John Wiley & Sons Inc.
6.	Lin, C.S.K., Kaur, G., Li, C., Yang, X. (2021) Waste Valorisation : Rethinking Waste streams in a Circular Economy. John Wiley & Sons Inc., New York, United States.