City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Wastewater Engineering and Water Quality Assessment
Course Code:	SEE6213
Course Duration:	One semester
Credit Units:	3
Level:	P6
Proposed Area: (for GE courses only)	Study of Societies, Social and Business Organisations Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	SEE8221 Wastewater Engineering and Water Quality Assessment
Exclusive Courses : <i>(Course Code and Title)</i>	Nil

Part II **Course Details**

1. Abstract

The course aims to provide students with the fundamental knowledge on wastewater engineering processes as well as the analytical techniques involved in assessing water quality. State-of-the-art processes in wastewater treatment will also be covered in the course.

2. **Course Intended Learning Outcomes (CILOs)**

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of *performance.*)

No.	CILOs	Weighting (if		/ery-eni ilum rel	
		applicable)		ng outco	
		11 /		e tick	
			Al	A2	A3
1.	Identify and classify the different sources of wastewater and their requirement for treatment depending on their discharge or final utilisation.	10%	V		
2.	Describe and perform various analysis of water and wastewater quality assessment.	20%		\checkmark	
3.	Design the various physical and chemical unit operations for wastewater treatment.	20%			
4.	Design the various biological unit operations for wastewater treatment.	20%		\checkmark	
5.	Describe the principles of various advanced treatment, concepts of water recycling and desalination.	30%			V
		100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

Accomplishments A3:

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. **Teaching and Learning Activities (TLAs)**

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA Brief Description		CILC) No.		Hours/week (if		
	-	1	2	3	4	5	applicable)
Lectures	The lectures will cover basic theories and concepts of wastewater treatment and control methods, techniques and operations of waste treatment plants, and management systems	√ √	√	√	, √		2
Tutorial	commonly use in Hong Kong. Open discussions in tutorial sessions will be given to students on engineering calculation procedure and formulation techniques.		1	√	V		1
Laboratory	Analysis water quality and understand its impact on environment		\checkmark				
Field visit	Recognize the contemporary technology at national levels in addressing environment problems and issues						
Mini projects	Develop innovative and creative solutions to wastewater treatment through teamwork and projects					\checkmark	

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CIL	CILO No.				Weighting	Remarks
	1	2	3	4	5		
Continuous Assessment: 70%							
Assignments						20%	
Project						30%	
Quiz						20%	
Examination: 30% (duration: 2 h	ours,	if app	licable	e)			
						100%	

Examination duration: 2 hrs

Percentage of coursework, examination, etc.: 70% by coursework; 30% by exam

To pass a course, a student must do ALL of the following:

- obtain at least 30% of the total marks allocated towards coursework (combination of assignments, 1) pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3) meet the criteria listed in the section on Assessment Rubrics.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure	
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)	
Assignments	Graded assignment in each	The student completes	The student completes	The student completes	The student fails to	
	topic with both calculations	all assessment	all assessment	all assessment	complete all assessment	
	and structured problem	tasks/activities and the	tasks/activities and can	tasks/activities but can	tasks/activities	
	solving	work demonstrates	describe and explain the	only briefly describe		
		excellent understanding	scientific principles.	some scientific		
		of the scientific		principles.		
		principles and the				
		working mechanisms				
Test	Comprehensive paper	He/she can thoroughly	He/she provides a	Only some of the	He/she fails to identify	
	examination with both	identify and explain	detailed evaluation of	analysis is appropriate	and explain how the	
	calculations and structured	how the principles are	how the principles are	to show how the	principles are applied to	
	problem solving in evaluating	applied to wastewater	applied to wastewater	principles are applied to	wastewater engineering.	
	student's learning abilities	engineering.	engineering.	wastewater engineering.		
Mini Project	Analyse and provide	He/she is able to	He/she is able to	He/she can	He/she is weak in	
	innovative engineering	communicate ideas	communicate ideas	communicate simple	communicating ideas	
	solution in wastewater	effectively and	effectively via written	ideas in writing and/or	and/or the student's	
	treatment	persuasively via written	texts and/or oral	in oral presentations.	work shows evidence of	
		texts and/or oral	presentation.		plagiarism.	
		presentation.				

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
Assignments	Graded assignment in each topic with both calculations and structured problem solving	The student completes all assessment tasks/activities and the work demonstrates excellent understanding of the scientific principles and the working mechanisms	The student completes all assessment tasks/activities and can describe and explain the scientific principles.	The student completes all assessment tasks/activities and can describe and explain some scientific principles.	The student completes all assessment tasks/activities but can only briefly describe some scientific principles.	The student fails to complete all assessment tasks/activities
Test	Comprehensive paper examination with both calculations and structured problem solving in evaluating student's learning abilities	He/she can thoroughly identify and explain how the principles are applied to wastewater engineering.	He/she provides a detailed evaluation of how the principles are applied to wastewater engineering.	He/she provides simple but accurate evaluations of how the principles are applied to wastewater engineering.	Only some of the analysis is appropriate to show how the principles are applied to wastewater engineering.	He/she fails to identify and explain how the principles are applied to wastewater engineering.
Mini Project	Analyse and provide innovative engineering solution in wastewater treatment	He/she is able to communicate ideas effectively and persuasively via written texts and/or oral presentation.	He/she is able to communicate ideas effectively via written texts and/or oral presentation.	He/she can communicate ideas clearly in written texts and/or in oral presentations.	He/she can communicate simple ideas in writing and/or in oral presentations.	He/she is weak in communicating ideas and/or the student's work shows evidence of plagiarism.

Applicable to students admitted before Semester A 2022/23

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Composition and classification of wastewater
- Analytical techniques in water quality assessment
- Physical unit operations sedimentation, flocculation, flotation
- Chemical unit operations aeration, pH, chlorination, ion exchange
- Biological treatment aerobic/anaerobic treatment, activated sludge, trickling filter
- Membrane bioreactor (MBR)
- Advanced oxidation processes ozone, UV, Fenton, photo-Fenton, photocatalysis
- Water recycling and desalination

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Metcalf and Eddy /Aecom, Wastewater Engineering: Treatment and Resource Recovery 5th Edition, McGraw-Hill International Edition, 2014.
2.	MIHELCIC, J.R. and ZIMMERMAN, J.J. (2009) Environmental Engineering: Fundamentals, Sustainability, Design. New Jersey: John Wiley & Sons, Ltd.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	MACKENZIE, D. (2010) Water and Wastewater Engineering. New York: McGraw-Hill, Ltd.
2.	METCALF & EDDY: AECOM, Inc. (2007) Water Reuse: Issues, Technologies, and Applications, New York: McGraw-Hill, Ltd.
3.	IZRAIL, S., TUROVSKIY, P. and MATHAI, K. (2006) Wastewater Sludge Processing. New Jersey: John Wiley & Sons, Ltd.
4.	RUSSELL, D.L. (2006) Practical Wastewater Treatment. New Jersey: John Wiley & Sons, Ltd.