City University of Hong Kong Course Syllabus

offered by School of Energy and Environment with effect from Semester A 2022/23

Part I Course Over	view
Course Title:	Emerging Energy Technologies
Course Code:	SEE6118
Course Duration:	One semester
Credit Units:	3
Level:	P6 Arts and Humanities
Proposed Area: (for GE courses only)	Study of Societies, Social and Business Organisations Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	SEE8125 Emerging Energy Technologies
Exclusive Courses: (Course Code and Title)	Nil

1

Part II Course Details

1. Abstract

The course aims to provide students with the fundamental knowledge on the emerging energy technologies. This includes technologies that are expected to be the next state-of-the-art in the near future, from innovative clean energy conversion to energy storage. The acquired knowledge shall equip students for the rapidly evolving energy frontiers, and serve as a common ground for potential innovations in these technologies.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting (if applicable)	curricu learnin	very-enrulum relag outco tick priate)	lated omes
			AI	A2	A3
1.	Describe basic principles in the conversion of fossil fuel (coal and natural gas) to ultraclean fuel, as well as their importance in the future energy equations; describe the process of carbon capture and storage and its importance in the integration of fossil fuel	20%	✓	✓	
2.	Describe the various means of solar energy conversion from first to third generation photovoltaic solar cells, and photoelectrochemical conversion; describe the working principles of different types of fuel cells.	30%	✓	✓	✓
3.	Describe the principles of energy storage through lithium ion batteries and supercapacitors, and their advantages; describe the principles of hydrogen storage such as metal hydrides and carbon nanotubes	30%	✓	√	
4.	Apply the principles to evaluate the performances and challenges in various technologies.	20%		✓	
		100%			

AI: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description		No.	Hours/week (if		
		1	2	3	4	applicable)
Lecture	Regular lectures to enrich students with the required science fundamentals for the applications of emerging technologies in	√	√	✓		2 hours/week
	energy conversion and storage					
Tutorial	Mathematical-based in-class exercise to consolidate the skills of students in designing energy systems based on emerging technologies		✓	✓	✓	1 hour/week
Topical Workgroup	In-depth understanding of selected technologies by problem-solving		✓	√	√	2 hours/week
Presentation	General presentation to share research findings with classmates		√	✓		

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities		CILO No.				Weighting	Remarks
	1	2	3	4			
Continuous Assessment: 100 %							
Assignment			✓	✓		85%	
Oral presentation	✓	✓	✓	✓		15%	
Examination: <u>0</u> % (duration: NA)							
				<u> </u>		100%	

To pass a course, a student must do ALL of the following:

- 1) obtain at least 30% of the total marks allocated towards coursework (combination of assignments, pop quizzes, term paper, lab reports and/ or quiz, if applicable);
- 2) obtain at least 30% of the total marks allocated towards final examination (if applicable); and
- 3) meet the criteria listed in the section on Assessment Rubrics.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B,)	(B-, C+, C)	(F)
1. Assignment	Ability to apply mathematical skills	High	Significant	Moderate	Not even reaching
	in designing energy storage and			to Basic	marginal levels
	conversion systems based on				
	emerging technologies				
2. Oral presentation	Ability to convey research findings	High	Significant	Moderate	Not even reaching
	orally in a convincing and			to Basic	marginal levels
	systematic manner				

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Assignment	Ability to apply mathematical skills in designing energy storage and conversion systems based on emerging technologies	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Oral presentation	Ability to convey research findings orally in a convincing and systematic manner	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Ultraclean fossil fuel conversion:

Gas-to-liquid conversion Clean coal technologies Carbon capture and storage

Energy conversion:

First, second and third generation solar cells Photoelectrochemical conversion Hydrogen fuel cells, direct methanol fuel cells, solid oxide fuel cells

Energy storage:

Lithium-ion batteries Supercapacitor Hydrogen storage

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Raimondi, F., Scherer, G.G., Kötz, R., Wokaun, A. Nanoparticles in energy technology: Examples from electrochemistry and catalysis, <i>Angew. Chem. Int. Ed.</i> 2005 , <i>44</i> , 2190.
2.	Somorjai, G.A., Frei, H., Park, J.Y. Advancing the frontiers in nanocatalysis, biointerfaces and renewable energy conversion by innovations of surface techniques, <i>J. Am. Chem. Soc.</i> 2009 , <i>131</i> , 16589.
3.	Kamat, P.V. Meeting the clean energy demand. Nanostructure architectures for solar energy conversion, <i>J. Phys. Chem. C</i> , 2007 , <i>111</i> , 2834.
4.	Winter, M., Brodd, R.J. What are batteries, fuel cells, and supercapacitors? <i>Chem. Rev.</i> 2004 , <i>104</i> , 4245.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

Nil